Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Forecast Calls for Mild Amazon Fire Season in 2012

11.05.2012
Forests in the Amazon Basin are expected to be less vulnerable to wildfires this year, according to the first forecast from a new fire severity model developed by university and NASA researchers.

Fire season across most of the Amazon rain forest typically begins in May, peaks in September and ends in January. The new model, which forecasts the fire season’s severity from three to nine months in advance, calls for an average or below-average fire season this year within 10 regions spanning three countries: Bolivia, Brazil and Peru.

“Tests of the model suggested that predictions should be possible before fire activity begins in earnest,” said Doug Morton, a co-investigator on the project at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This is the first year to stand behind the model and make an experimental forecast, taking a step from the scientific arena to share this information with forest managers, policy makers, and the public alike.”

The model was first described last year in the journal Science. Comparing nine years of fire data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite, with a record of sea surface temperatures from NOAA, scientists established a connection between sea surface temperatures in the Pacific and Atlantic oceans and fire activity in South America.

“There will be fires in the Amazon Basin, but our model predictions suggest that they won’t be as likely in 2012 as in some previous years,” said Jim Randerson of the University of California, Irvine, and principal investigator on the research project.

Specifically, sea surface temperatures in the Central Pacific and North Atlantic are currently cooler than normal. Cool sea surface temperatures change patterns of atmospheric circulation and increase rainfall across the southern Amazon in the months leading up to the fire season.

“We believe the precipitation pattern during the end of the wet season is very important because this is when soils are replenished with water,” said Yang Chen of UC Irvine. “If sea surface temperatures are higher, there is reduced precipitation across most of the region, leaving soils with less water to start the dry season.”

Without sufficient water to be transported from the soil to the atmosphere by trees, humidity decreases and vegetation is more likely to burn. Such was the case in 2010, when above-average sea surface temperatures and drought led to a severe fire season. In 2011, conditions shifted and cooler sea surface temperatures and sufficient rainfall resulted in fewer fires, similar to the forecast for 2012.

Building on previous research, the researchers said there is potential to adapt and apply the model to other locations where large-scale climate conditions are a good indicator of the impending fire season, such as Indonesia and the United States.

Amazon forests, however, are particularly relevant because of their high biodiversity and vulnerability to fires. Amazon forests also store large amounts of carbon, and deforestation and wildfires release that carbon back to the atmosphere. Predictions of fire season severity may aid initiatives – such as the United Nation’s Reducing Emissions from Deforestation and forest Degradation program – to reduce the emissions of greenhouse gases from fires in tropical forests.

“The hope is that our experimental fire forecasting information will be useful to a broad range of communities to better understand the science, how these forests burn, and what predisposes forests to burning in some years and not others,” Morton said. “We now have the capability to make predictions, and the interest to share this information with groups who can factor it into their preparation for high fire seasons and management of the associated risks to forests and human health.”

To see the 2012 prediction and UC Irvine disclaimer clause, visit:
https://webfiles.uci.edu/ychen17/data/SAMFSS.html
Related story, "Ocean Temperatures Can Predict Amazon Fire Season Severity":
http://www.nasa.gov/mission_pages/fires/main/amazon-fire-season.html
Kathryn Hansen
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-1046
kathryn.h.hansen@gmail.com
Janet Wilson
University of California, Irvine
949-824-3969
janethw@uci.edu

Kathryn Hansen | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/fires/main/mild-amazon.html

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>