Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme winters impact fish negatively

14.02.2013
Ecologists from Umeå University and the Norwegian University of Science and Technology in Trondheim have studied fish communities and the living environments of fish and put together a compilation of the importance of winter conditions for fish in streams and rivers in cold regions. The findings are now being published in the journal BioScience.

It is well known that winter can be a stressful season for plants and animals in streams and rivers. It is reasonable to assume that it is the more extreme weather conditions that are the most taxing, but the ecological significance of this is poorly understood.


It is difficult to be a fish when the bottom of the river is covered with ice. Winter image from the river Orkla in Norway. Photo: Knut Alfredsen

The research team, headed by Professor Christer Nilsson at Umeå University, describes how extreme conditions – especially those associated with ice formation and ice break-up – vary over time and affect both the non-living environment and its fish. For example, waterways can fill up with ice and kill all fish that do not manage to flee to backwaters or deeper stretches of quiet water that is not filled with ice. Young fish are especially vulnerable.

The researchers also discuss how humans have impacted what happens in streams and rivers in the winter.

“Rivers that have been exploited for hydroelectric power can be especially hard for fish to live in, because the way hydropower is produced often means that the flow is radically changed again and again, which can lead to repeated ice break-ups and a great deal of bottom ice formation. When the ice cover at the surface disappears, cold air is fed downward in the water and forms ice crystals that cover the bottom, making it hard for fish to survive,” says Christer Nilsson.

The scientists draw a number of conclusions from the study. One is that more measurements are needed in order to be able to predict when extreme situations in waterways may arise and that information about both the lives of different fishes and how they are affected by extreme events should be included in such data gathering. Another is that models of how water moves and what fish populations look like should also take winter conditions into consideration.

Today most models are about the ice-free period. A third conclusion is that in order to be able to manage streams and rivers in a long-term sustainable manner, we need to pay attention to future changes in climate, for example, when we design restoration and conservation measures.

“The predictions made about what the winter climate will be like in the future say that there will be more back and forth between thaw and frost, entailing more unstable ice conditions, more rain, and flooding, and ultimately perhaps more challenges to the survival of fish in many waterways,” says Christer Nilsson.

Original publication:
The article will be published in the March issue of BioScience
Weber, C., C. Nilsson, L. Lind, K.T. Alfredsen & L.E. Polvi. 2013. Winter disturbances and riverine fish in temperate and cold regions. BioScience 63:199-210. doi:10:1525/bio.2013.63.3.8.
For more information, please contact:
Christer Nilsson, Department of Ecology and Environmental Science, Umeå University, Phone: +46 (0)90-786 60 03, E-mail: christer.nilsson@emg.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.umu.se

Further reports about: BioScience fish population ice crystal ice formation

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>