Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expert assessment: Ocean acidification may increase 170 percent this century

14.11.2013
Substantial costs expected from coral reef loss and declines in shellfisheries; Cold water corals also at risk

In a major new international report, experts conclude that the acidity of the world's ocean may increase by around 170% by the end of the century bringing significant economic losses. People who rely on the ocean's ecosystem services – often in developing countries - are especially vulnerable.

A group of experts have agreed on 'levels of confidence' in relation to ocean acidification statements summarising the state of knowledge. The summary was led by the International Geosphere-Biosphere Programme and results from the world's largest gathering of experts on ocean acidification ever convened. The Third Symposium on the Ocean in a High CO2 World was held in Monterey, California (September 2012), and attended by 540 experts from 37 countries. The summary will be launched at the UNFCCC climate negotiations in Warsaw, 18 November, for the benefit of policymakers.

Experts conclude that marine ecosystems and biodiversity are likely to change as a result of ocean acidification, with far-reaching consequences for society. Economic losses from declines in shellfish aquaculture and the degradation of tropical coral reefs may be substantial owing to the sensitivity of molluscs and corals to ocean acidification.

One of the lead authors of the summary, and chair of the symposium, Ulf Riebesell of GEOMAR Helmholtz Centre for Ocean Research Kiel said: "What we can now say with high levels of confidence about ocean acidification sends a clear message. Globally we have to be prepared for significant economic and ecosystem service losses. But we also know that reducing the rate of carbon dioxide emissions will slow acidification. That has to be the major message for the COP19 meeting."

One outcome emphasised by experts is that if society continues on the current high emissions trajectory, cold water coral reefs, located in the deep sea, may be unsustainable and tropical coral reef erosion is likely to outpace reef building this century. However, significant emissions reductions to meet the two-degree target by 2100 could ensure that half of surface waters presently occupied by tropical coral reefs remain favourable for their growth.

Author Wendy Broadgate, Deputy Director at the International Geosphere-Biosphere Programme, said: "Emissions reductions may protect some reefs and marine organisms but we know that the ocean is subject to many other stresses such as warming, deoxygenation, pollution and overfishing. Warming and deoxygenation are also caused by rising carbon dioxide emissions, underlining the importance of reducing fossil fuel emissions. Reducing other stressors such as pollution and overfishing, and the introduction of large scale marine protected areas, may help build some resilience to ocean acidification."

The summary for policymakers makes 21 statements about ocean acidification with a range of confidence levels from "very high" to "low".

These include:

Very high confidence

Ocean acidification is caused by carbon dioxide emissions from human activity to the atmosphere that end up in the ocean.
The capacity of the ocean to act as a carbon sink decreases as it acidifies
Reducing carbon dioxide emissions will slow the progress of ocean acidification.
Anthropogenic ocean acidification is currently in progress and is measurable
The legacy of historical fossil fuel emissions on ocean acidification will be felt for centuries.

High confidence

If carbon dioxide emissions continue on the current trajectory, coral reef erosion is likely to outpace reef building some time this century.
Cold-water coral communities are at risk and may be unsustainable.
Molluscs (such as mussels, oysters and pteropods) are one of the groups most sensitive to ocean acidification.
The varied responses of species to ocean acidification and other stressors are likely to lead to changes in marine ecosystems, but the extent of the impact is difficult to predict.

Multiple stressors compound the effects of ocean acidification.

Medium confidence

Negative socio-economic impacts on coral reefs are expected, but the scale of the costs is uncertain.
Declines in shellfisheries will lead to economic losses, but the extent of the losses is uncertain.
Ocean acidification may have some direct effects on fish behaviour and physiology.

The shells of marine snails known as pteropods, an important link in the marine food web, are already dissolving.

The summary for policymakers is published by the International Geosphere Biosphere Programme, one of the sponsors of the symposium which was organised by the Scientific Committee on Oceanic Research, IGBP and the Intergovernmental Oceanographic Commission of UNESCO. The summary will be presented during an event at the UNFCCC COP-19 next week.

Sophie Hulme | EurekAlert!
Further information:
http://www.icsu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>