Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expert assessment: Ocean acidification may increase 170 percent this century

14.11.2013
Substantial costs expected from coral reef loss and declines in shellfisheries; Cold water corals also at risk

In a major new international report, experts conclude that the acidity of the world's ocean may increase by around 170% by the end of the century bringing significant economic losses. People who rely on the ocean's ecosystem services – often in developing countries - are especially vulnerable.

A group of experts have agreed on 'levels of confidence' in relation to ocean acidification statements summarising the state of knowledge. The summary was led by the International Geosphere-Biosphere Programme and results from the world's largest gathering of experts on ocean acidification ever convened. The Third Symposium on the Ocean in a High CO2 World was held in Monterey, California (September 2012), and attended by 540 experts from 37 countries. The summary will be launched at the UNFCCC climate negotiations in Warsaw, 18 November, for the benefit of policymakers.

Experts conclude that marine ecosystems and biodiversity are likely to change as a result of ocean acidification, with far-reaching consequences for society. Economic losses from declines in shellfish aquaculture and the degradation of tropical coral reefs may be substantial owing to the sensitivity of molluscs and corals to ocean acidification.

One of the lead authors of the summary, and chair of the symposium, Ulf Riebesell of GEOMAR Helmholtz Centre for Ocean Research Kiel said: "What we can now say with high levels of confidence about ocean acidification sends a clear message. Globally we have to be prepared for significant economic and ecosystem service losses. But we also know that reducing the rate of carbon dioxide emissions will slow acidification. That has to be the major message for the COP19 meeting."

One outcome emphasised by experts is that if society continues on the current high emissions trajectory, cold water coral reefs, located in the deep sea, may be unsustainable and tropical coral reef erosion is likely to outpace reef building this century. However, significant emissions reductions to meet the two-degree target by 2100 could ensure that half of surface waters presently occupied by tropical coral reefs remain favourable for their growth.

Author Wendy Broadgate, Deputy Director at the International Geosphere-Biosphere Programme, said: "Emissions reductions may protect some reefs and marine organisms but we know that the ocean is subject to many other stresses such as warming, deoxygenation, pollution and overfishing. Warming and deoxygenation are also caused by rising carbon dioxide emissions, underlining the importance of reducing fossil fuel emissions. Reducing other stressors such as pollution and overfishing, and the introduction of large scale marine protected areas, may help build some resilience to ocean acidification."

The summary for policymakers makes 21 statements about ocean acidification with a range of confidence levels from "very high" to "low".

These include:

Very high confidence

Ocean acidification is caused by carbon dioxide emissions from human activity to the atmosphere that end up in the ocean.
The capacity of the ocean to act as a carbon sink decreases as it acidifies
Reducing carbon dioxide emissions will slow the progress of ocean acidification.
Anthropogenic ocean acidification is currently in progress and is measurable
The legacy of historical fossil fuel emissions on ocean acidification will be felt for centuries.

High confidence

If carbon dioxide emissions continue on the current trajectory, coral reef erosion is likely to outpace reef building some time this century.
Cold-water coral communities are at risk and may be unsustainable.
Molluscs (such as mussels, oysters and pteropods) are one of the groups most sensitive to ocean acidification.
The varied responses of species to ocean acidification and other stressors are likely to lead to changes in marine ecosystems, but the extent of the impact is difficult to predict.

Multiple stressors compound the effects of ocean acidification.

Medium confidence

Negative socio-economic impacts on coral reefs are expected, but the scale of the costs is uncertain.
Declines in shellfisheries will lead to economic losses, but the extent of the losses is uncertain.
Ocean acidification may have some direct effects on fish behaviour and physiology.

The shells of marine snails known as pteropods, an important link in the marine food web, are already dissolving.

The summary for policymakers is published by the International Geosphere Biosphere Programme, one of the sponsors of the symposium which was organised by the Scientific Committee on Oceanic Research, IGBP and the Intergovernmental Oceanographic Commission of UNESCO. The summary will be presented during an event at the UNFCCC COP-19 next week.

Sophie Hulme | EurekAlert!
Further information:
http://www.icsu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>