Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental Damage on the St. Lawrence River

28.01.2010
More than half a century after the opening of the St. Lawrence Seaway in 1959, Clarkson University biologist Michael R. Twiss is among a corps of scientists charting the environmental change the Seaway and hydroelectric power projects have wrought.

Global commerce for the Great Lakes brought with it scores of invasive species. “A ship coming from the Baltic may carry an uninvited international hitchhiker,” says Twiss.

One of those hitchhikers, says Twiss, was the zebra mussel -- a small aquatic animal originally found in Russia. The mussel arrived around 1988 and began to breed. Since each female produces one million eggs a year, the burgeoning mussel population has had a drastic effect on the ecology of the Great Lakes.

For instance, the mussels changed the aquatic food supply by filtering phytoplankton, and markedly increased the clarity of Great Lakes water in the process. But the cleansing deprived other species of food.

“This caused lake trout to starve,” says Twiss, an associate professor of biology and director of the Great Rivers Center at Clarkson University. He said the mussels have also turned some beaches into “middens,” or dumps of empty mussel shells.

The zebra mussel population is controlled in part by the appetite of another species that also arrived via the Seaway – the round goby, a fish native to Eastern Europe’s Black and Caspian Seas. The goby showed up in 1990 and began to feast on the mussels. This kept the gobies well fed and helped to control the zebra mussel population, but produced yet another environmental shift. “Things like the sturgeon and the small mouth bass are thriving because they eat the goby,” Twiss explains.

It is a case of one thing leading to another, and Twiss wants to better understand how this constantly evolving system works. It is familiar territory; Twiss, a Yankee who grew up on the north shore of Lake Huron in Canada, has been around the Great Lakes all his life.

Now he is trying to find out what makes the system tick, with a particular focus on the little-studied 115-mile International Section of the St. Lawrence River which forms part of the boundary between New York State and Ontario. But Twiss and his research colleagues recognize that the environmental change wrought by invasive species can’t be easily reversed.

Rapid ecological change has been a constant in the region since the arrival of European settlers. Since the 1800s, more than 136 invasive fish, algae, invertebrate, and plant species have colonized the Great Lakes, according to the U.S. Geological Survey. An early arrival was the sea lamprey, an eel-like primitive fish with a vampire’s eating habits. The lamprey hooks its prey with its sucker mouth, drills a hole with its teeth, and then drains its victims of fluids and blood. Its prey includes salmon, lake trout, and sturgeon. The lamprey, which was discovered in Lake Ontario in the 1830s, may have entered through the Erie Canal.

But the St. Lawrence Seaway set off a new round of upheaval by allowing foreign invaders to reach the Great Lakes as stowaways in ship ballast, the extra water that ships carry to control stability in the water. When this water was dumped, invaders were set loose. The zebra mussel is believed to have arrived this way. New regulations now control where ballast can be emptied, but they came too late.

The Seaway was built to spur the economies of adjoining states and Canadian provinces by allowing ocean ships to travel unimpeded from the Atlantic to Duluth, Minn. Unfortunately, when the Seaway’s 50th anniversary arrived, the media focused on the undesirable changes it had brought.

One of these changes came with the damming of the Long Sault Rapids, which allowed the installation of locks to handle big ships. “They drowned the rapids,” says Twiss. This removed the natural fluctuations in water levels, so that cattail marshes took over sections of the river where fish once spawned.

It might seem logical to simply restore fluctuating water levels, and Twiss says several plans to do this have emerged. But Twiss cautions against haste. The danger is that fixing one problem may create another.

One sticking point is that wetlands are a natural reservoir for mercury because they aren’t flushed by changing water levels. The river has been dammed for half a century and a lot of mercury has accumulated. “It potentially would be released in bulk if the water were allowed to rise and fall more naturally,” Twiss says. In turn, this might render the fish in the river contaminated for human consumption, a warning not heeded by the burgeoning Bald Eagle population on the river.

It would amount to “yet another disturbance, when we already don’t understand how things work now,” Twiss adds. He is working with a colleague from the University of Ottawa to study the area where the rapids once lay. But even as they work, other changes may be taking place.

“It’s like bobsledding,” observes Twiss. “You can’t get off, and it changes direction so rapidly it is difficult to keep your bearings. For a scientist, it’s very challenging. Just when you think you understand the system, something else happens.”

Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

Michael P. Griffin | Newswise Science News
Further information:
http://www.clarkson.edu

More articles from Ecology, The Environment and Conservation:

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Are Fish Getting High on Cocaine?
28.07.2015 | McGill University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>