Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ecosystem Effects of Biodiversity Loss Rival Climate Change and Pollution

First comprehensive effort to compare biodiversity loss to other human-caused environmental changes

Loss of biodiversity appears to affect ecosystems as much as climate change, pollution and other major forms of environmental stress, according to results of a new study by an international research team.

The study is the first comprehensive effort to directly compare the effects of biological diversity loss to the anticipated effects of a host of other human-caused environmental changes.

The results, published in this week's issue of the journal Nature, highlight the need for stronger local, national and international efforts to protect biodiversity and the benefits it provides, according to the researchers, who are based at nine institutions in the United States, Canada and Sweden.

"This analysis establishes that reduced biodiversity affects ecosystems at levels comparable to those of global warming and air pollution," said Henry Gholz, program director in the National Science Foundation's Division of Environmental Biology, which funded the research directly and through the National Center for Ecological Analysis and Synthesis.

"Some people have assumed that biodiversity effects are relatively minor compared to other environmental stressors," said biologist David Hooper of Western Washington University, the lead author of the paper.

"Our results show that future loss of species has the potential to reduce plant production just as much as global warming and pollution."

Studies over the last two decades demonstrated that more biologically diverse ecosystems are more productive.

As a result, there has been growing concern that the very high rates of modern extinctions--due to habitat loss, overharvesting and other human-caused environmental changes--could reduce nature's ability to provide goods and services such as food, clean water and a stable climate.

Until now, it's been unclear how biodiversity losses stack up against other human-caused environmental changes that affect ecosystem health and productivity.

"Loss of biological diversity due to species extinctions is going to have major effects on our planet, and we need to prepare ourselves to deal with them," said ecologist Bradley Cardinale of the University of Michigan, one of the paper's co-authors. "These extinctions may well rank as one of the top five drivers of global change."

In the study, Hooper, Cardinale and colleagues combined data from a large number of published studies to compare how various global environmental stressors affect two processes important in ecosystems: plant growth and the decomposition of dead plants by bacteria and fungi.

The study involved the construction of a database drawn from 192 peer-reviewed publications about experiments that manipulated species richness and examined their effect on ecosystem processes.

This global synthesis found that in areas where local species loss during this century falls within the lower range of projections (losses of 1 to 20 percent of plant species), negligible effects on ecosystem plant growth will result, and changes in species richness will rank low relative to the effects projected for other environmental changes.

In ecosystems where species losses fall within intermediate projections of 21 to 40 percent of species, however, species loss is expected to reduce plant growth by 5 to 10 percent.

The effect is comparable to the expected effects of climate warming and increased ultraviolet radiation due to stratospheric ozone loss.

At higher levels of extinction (41 to 60 percent of species), the effects of species loss ranked with those of many other major drivers of environmental change, such as ozone pollution, acid deposition on forests and nutrient pollution.

"Within the range of expected species losses, we saw average declines in plant growth that were as large as changes in experiments simulating several other major environmental changes caused by humans," Hooper said.

"Several of us working on this study were surprised by the comparative strength of those effects."

The strength of the observed biodiversity effects suggests that policymakers searching for solutions to other pressing environmental problems should be aware of potential adverse effects on biodiversity as well.

Still to be determined is how diversity loss and other large-scale environmental changes will interact to alter ecosystems.

"The biggest challenge looking forward is to predict the combined effects of these environmental challenges to natural ecosystems and to society," said J. Emmett Duffy of the Virginia Institute of Marine Science, a co-author of the paper.

Authors of the paper, in addition to Hooper, Cardinale and Duffy, are E. Carol Adair of the University of Vermont and the National Center for Ecological Analysis and Synthesis; Jarrett Byrnes of the National Center for Ecological Analysis and Synthesis; Bruce Hungate of Northern Arizona University; Kristen Matulich of University of California, Irvine; Andrew Gonzales of McGill University; Lars Gamfeldt of the University of Gothenburg; and Mary O'Connor of the University of British Columbia and the National Center for Ecological Analysis and Synthesis.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
Jim Erickson, University of Michigan (734) 647-1842

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>