Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eastern US water supplies threatened by a legacy of acid rain

27.08.2013
Human activities are changing the water chemistry of many streams and rivers in the Eastern U.S., with consequences for water supplies and aquatic life, so reports a new study in the journal Environmental Science and Technology.

In the first survey of its kind, researchers looked at long-term alkalinity trends in 97 streams and rivers from Florida to New Hampshire. Sites ranged from small headwater streams to some of the nation's largest rivers. Over the past 25 to 60 years, two-thirds have become significantly more alkaline.


Alkalinity trends were observed in large rivers like the Potomac River as well as small streams located in urbanized watersheds, such as the Gwynns Falls in Baltimore, Md.

Credit: Steward T.A. Pickett, Baltimore Ecosystem Study LTER

Alkalinity is a measure of water's ability to neutralize acid. In excess, it can cause ammonia toxicity and algal blooms, altering water quality and harming aquatic life. Increasing alkalinity hardens drinking water, causing pipe scaling and costly infrastructure problems. And, perhaps most alarming, it exacerbates the salinization of fresh water.

In what may seem like a paradox, human activities that create acid conditions are driving the problem. This is because acid rain, acidic mining waste, and agricultural fertilizers speed the breakdown of limestone, other carbonate rocks, and even concrete and cement. The result: alkaline particles are washed off of the landscape and into streams and rivers.

The survey found watershed geology was the strongest predictor of river alkalinization, with rivers receiving water from porous, limestone, and other carbonate rocks being more alkaline. Topography and pollution were also triggers. The most rapid rates of alkalinization were at high elevation sites that were chronically exposed to acid pollution.

Among the rivers impacted by higher alkalinity are those that provide water for Washington, D.C., Philadelphia, Baltimore, Atlanta, and other major cities, the researchers reported. This is due, in part, to acid rain exposure, urbanization, and the extent of land covered by cement and concrete.

Also affected are rivers that flow into water bodies already harmed by excess algae, such as the Chesapeake Bay, where managers are struggling to contain algal blooms that are toxic to fish, oysters, and crabs. Appalachian Mountain streams are also vulnerable. In that region, thin soils and steep slopes cause erosion, and there is persistent exposure to industry emissions.

Noted ecologist Gene Likens, Founding Director of the Cary Institute of Ecosystem Studies and a co-discoverer of acid rain, was among the study's authors. The extent of alkalinity change in streams and rivers exceeded his expectations: "This is another example of the widespread impact humans are having on natural systems. Policymakers and the public think that the acid rain problem has gone away, but it has not."

Adding, "Acid rain has led to increased outputs of alkalinity from watersheds and contributed to long-term, increasing trends in our rivers. And this is twenty years after federal regulations were enacted to reduce the airborne pollutants that cause acid rain."

Lead author Sujay Kaushal, an associate professor and aquatic ecologist at the University of Maryland, notes, "What we are seeing may be a legacy effect of more than five decades of pollution. These systems haven't recovered. Lagging effects of river alkalinization are showing up across a major region of the U.S. How many decades will it persist? We really don't know the answer."

The research was funded by NASA Carbon Cycle & Ecosystems, the National Science Foundation's Long Term Ecological Research Program, and The Andrew W. Mellon Foundation.

Sujay S. Kaushal, Gene E. Likens, Ryan M. Utz, Michael L. Pace, Melissa Grese, and Metthea Yepsen, "Increased river alkalization in the Eastern U.S," in Environmental Science and Technology, August 26, 2013. View the article at: http://pubs.acs.org/doi/abs/10.1021/es401046s

The full research team included:
Sujay S. Kaushal, University of Maryland, College Park
Gene E. Likens, Cary Institute of Ecosystem Studies & University of Connecticut
Ryan M. Utz, National Ecological Observatory Network
Michael L. Pace, University of Virginia
Melissa Grese, University of Maryland, College Park
Metthea Yepsen, University of Maryland, College Park
The Cary Institute of Ecosystem Studies is a private, not-for-profit environmental research and education organization in Millbrook, N.Y. For nearly thirty years, Cary Institute scientists have been investigating the complex interactions that govern the natural world. Their objective findings lead to more effective policy decisions and increased environmental literacy. Areas of expertise include air and water pollution, climate change, invasive species, and the ecological dimensions of infectious disease. Learn more at http://www.caryinstitute.org

Lori Quillen | EurekAlert!
Further information:
http://www.caryinstitute.org

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>