Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New data show agricultural anabolic steroids regenerate in aquatic ecosystems

Article in Science magazine by University of Nevada, Reno and University of Iowa shows research result

New regulatory approaches may be needed to assess environmental risks of agricultural growth promoters, and similar human pharmaceuticals, following research that shows a newly found reversion mechanism allows unexpected persistence of the steroidal substances in aquatic environments.

Ed Kolodziej is an associate professor and researcher in the University of Nevada, Reno's College of Science and project leader of a collaborative multi-disciplinary research team that includes the University of Iowa and Truman State. He and his team found a new mechanism where chemicals transform, under certain conditions, to avoid detection, which may account for unexplained observations of endocrine disruption in aquatic organisms.

Credit: Photo courtesy of University of Nevada, Reno.

Results of the research will be published in an article in the renowned journal Science – the weekly journal of AAAS, the science society – next month and are available immediately online in Science Express.

"We investigated trenbolone, an anabolic steroid, and found that the photochemical breakdown isn't the end of its life cycle," Ed Kolodziej, co-author of the paper and environmental engineering professor at the University of Nevada, Reno, said. "Our team found that these substances, after a rapid breakdown in sunlight, are capable of a unique transformation in aquatic environments under various temperature and light-cycle scenarios where the process is reversed."

Kolodziej, project leader of a collaborative multi-disciplinary research team that includes the University of Iowa and Truman State, said this newly found mechanism may account for unexplained observations of endocrine disruption in aquatic organisms.

"Right now, I'm not alarmed, just concerned and interested in defining the real ecological risks associated with the widespread use of potent steroidal pharmaceuticals," Kolodziej, who has been studying the effects of these substances on aquatic ecosystems for 12 years, said. "This implies uncertainty with the current environmental risk assessments or ecotoxicology studies used by regulatory agencies, researchers and pharmaceutical companies."

The team used laboratory and field studies to explore the process. They found that the steroid's chemical compounds, while breaking down as expected in sunlight, never fully disappeared; even in conditions that mimicked surface water, a small percentage of the chemical structure remained after extended sunlight. The remains regenerated themselves at night, in some cases to up to 70 percent of the metabolites initial mass."

"We knew something unique was going on," David Cwiertny, Kolodziej's research partner from the University of Iowa, said. "In daylight, it essentially hides in another form, to evade analysis and detection, and then at nighttime it readily transforms back to a state that we can detect."

The researchers validated the lab results with two experiments in the field – one with water taken from the Iowa River in Iowa City, Iowa and the other from samples taken from a collection pond at a cattle rangeland and research operation in California's Central Valley run by the University of California, Davis.

Trenbolone is a federally approved drug widely used by the beef industry to promote weight gain and to increase feeding efficiency in cattle. The drug, although popular in the bodybuilding and weightlifting communities, and as an athletic performance enhancer, has long been banned for human use, and also is banned for agricultural uses in the E.U.

Trenbolone has been considered safe for ecosystems due to its initially rapid degradation, with studies pointing to an environmental half-life of less than a day. Studies have indicated that low concentrations of these endocrine disrupting environmental steroids affect fish, by reducing egg production of females and skewing the sex of some species.

The article can be found at the Science Express website:

Kolodziej is an associate professor in the University of Nevada, Reno's College of Engineering. His website can found at

Founded in 1874 as Nevada's land-grant university, the University of Nevada, Reno ranks in the top tier of best national universities. With nearly 19,000 students, the University is driven to contribute a culture of student success, world-improving research and outreach that enhances communities and business. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and home to one of the largest study-abroad consortiums, the University extends across the state and around the world. For more information, visit

Mike Wolterbeek | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>