Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New constellations of species change ecosystems

10.06.2011
Human activities that are causing global climate changes and destroying habitats in nature are leading to the extinction of many species from the earth’s ecosystems. At the same time many species are expanding the range of their habitat.

An article by Professor David Wardle at the Swedish University of Agricultural Sciences (SLU) in Umeå in collaboration with researchers in the UK, the US, and the Netherlands, now being published in the prestigious journal Science, sheds new light on this subject.

The scientists offer suggestions for how research can get better at understanding species loss and the simultaneous gain of new species and how this affects the function of the ecosystem.

At the same time as species disappear or are made extinct, many species expand their range as a result of humans introducing new species to new environments and because certain species benefit from ongoing climate change.

Some researchers have studied the consequences of losing a species in an ecosystem, while others have been interested in what happens when new species are added.

Even though species loss and species gain occur in parallel, researchers have not studied these two phenomena at the same time. However, it is important to do so if we wish to understand how human activities impact ecosystems’ production, nutritional cycle, and capacity to store carbon.

The authors of the article make it clear that the species gained by the ecosystems due to human activities affect the ecosystems in a different way than the species that are lost. This means that the main impact of human activity on ecosystems may arise from our replacing species with other species that behave differently. It is stressed that these effects are most acute when the species dominate (have great biomass) in the ecosystem or have such key characteristics that they determine how the ecosystems function.

In the article the authors highlight that much remains unknown regarding how this simultaneous loss and gain of species can affect ecosystems.

Considerable and important advances have been made regarding how and why new (invasive) species change ecosystems, because much of the research in this area has focused on how the properties of the new species impact the ecosystems.

Today we have limited knowledge of how species loss affects ecosystems, because this has mainly been studied in a random selection of species in controlled experiments, despite the fact that species do not disappear from ecosystems by chance.

The authors emphasize the necessity of enhancing our knowledge of the changes in characteristics that have occurred as a result of species being lost and new species being added before researchers can say anything about how human activity impacts the function of ecosystems.

Terrestrial Ecosystem Responses to Species Gains and Losses
David A. Wardle1,*, Richard D. Bardgett2, Ragan M. Callaway3, Wim H. Van der Putten4
Science 10 June 2011:
Vol. 332 no. 6035 pp. 1273-1277
DOI: 10.1126/science.1197479
Contact: David Wardle, Department of Forest Resource Management, SLU
mobile phone: +46 (0)70-560 32 10, phone: +46 (0)90-7868471
david.wardle@slu.se

Susanna SJöberg | idw
Further information:
http://www.vr.se
http://www.sciencemag.org/content/332/6035/1273.abstract

Further reports about: human activities human activity new species

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>