Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold War's nuclear wastes pose challenges to science, engineering, society

13.10.2011
Seven papers published in the current issue of Technology and Innovation, Proceedings of the National Academy of Inventors ™ report on efforts by the U.S. Department of Energy (DOE) to ensure continued safe and secure storage and disposition of 50 years worth of spent nuclear fuel, surplus nuclear materials, and high-level wastes at DOE facilities.

"Technology, innovation, development and deployment are key elements in the DOE cleanup effort," said Yvette T. Collazo, Paula G. Kirk and A. Alan Moghissi of the DOE's Office of Environmental Management and authors of a lead-in editorial outlining the issues addressed by papers – issues that range from how to prioritize projects to the nuts and bolts of advanced mediation efforts. "The DOE has implemented a new approach and business model to incorporate innovative strategies that build on scientific advancements to reduce the legacy footprint."

During 50-plus years of nuclear weapons production and government-sponsored nuclear energy research and production that generated contaminated soil and groundwater covering two million acres in 35 states, the U.S. government did not have environmental structures, technologies or infrastructure to deal with the legacy.

"Many of the excess facilities awaiting deactivation and decommissioning are one-of-a-kind or unique to the DOE, with unprecedented scope and complexity," said the authors. "In many cases, the necessary technologies are not yet developed or, if developed, they require significant re-engineering to fit DOE needs."

However, as outlined and evaluated by papers published in the current issue of Technology & Innovation, recent DOE efforts have both offered and analyzed remediation technology projects; technical reviews for evaluating system-level modeling and simulation; remedies for subsurface contamination; engineering systems for predicting the fate and transport of wastes; and communication models for the technical communities. The new models also include designs for collaboration between regulators, stakeholders, field offices, contractors, scientists, and technology developers.

For example, a critical review of technology and safe practices in spent nuclear fuel transport and storage found that mid-term storage (up to several decades) is feasible, yet long-term storage (up to 100 years) needs strengthened technology and management practices (Gary R. Peterson, DOE, Office of Environmental Management).

Another paper analyzes the success of polyphosphate remediation for uranium sequestering in areas where uranium groundwater contamination exceeds EPA limits (Dawn W. Wellman, Pacific Northwest National Lab, et al.). An External Technical Review team analyzed software and simulation modeling tools to support the planning for life-cycle liquid waste disposition and found that new tools are needed (John R. Shultz, DOE, Office of Waste Processing, et al.).

A fourth paper describes the development of a state-of-the-art tool and approach for predicting subsurface flow and contaminant transport behavior in complex geological systems (Mark K. Williams, DOE, Office of Environmental Management, et al.). And the DOE's Office of Environmental Management, responsible for the cleanup of the nation's nuclear weapons programs' wastes, created the Advanced Remediation Technologies (ART) projects that access private sector expertise for developing radioactive waste disposition technologies (Gary R. Peterson, DOE, Office of Environmental Management).

The Cementitious Barriers Partnership collaborated with the Department of Energy to devise simulation tools to estimate and improve the performance of cement barriers in nuclear applications (Daryl R. Haefer, DOE, Office of Environmental Management and Sharon L. Marra, Savannah River National Laboratory). Finally, Process Knowledge (PK) is a key resource for the DOE Office of Environmental Management's efforts to deactivate and decommission facilities for disposition. This article explains how the elements of the PK body of knowledge were developed (Paula G. Kirk, DOE, Office of Environmental Management, et al.).

In total, 35 authors from 11 institutions contributed to the seven papers in the current issue. Those institutions include the DOE, Pacific Northwest Laboratory, Champion Technologies, Inc., Cogentus Consulting, Limited, Argonne National Laboratory, the School of Engineering, Vanderbilt University, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, and the Savannah River National Laboratory.

The National Academy of Inventors™ is a 501c3 organization comprised of U.S. and international universities and non-profit research institutes. It was founded in 2010 at the University of South Florida to recognize and encourage inventors with a patent issued from the U.S. Patent and Trademark Office, enhance the visibility of university technology and innovation, encourage the disclosure of intellectual property, educate and mentor innovative students, and translate the inventions of its members to benefit society. Email info@academyofinventors.org; web www.academyofinventors.org

The editorial offices of Technology and Innovation are located at the University of South Florida, Office of Research & Innovation, 3702 Spectrum Blvd., Suite 175, Tampa, Florida, 33612 USA. Tel: +1-813-974-1347. Email TIjournal@research.usf.edu

News Release by Florida Science Communications, www.sciencescribe.net

Judy Lowry | EurekAlert!
Further information:
http://www.usf.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>