Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change threatens marine environment in the Baltic Sea

22.10.2012
At the end of the 21st century, the temperature in the Baltic Sea will be higher and the salt content lower than at any time since 1850. If no action is taken, there may be major consequences for the marine environment.

“This is the first time anyone has taken a detailed look at how climate models and individual factors combine to affect a specific region,” says Jonathan Havenhand, researcher at the University of Gothenburg, Sweden.

A large number of researchers from countries around the Baltic Sea have been collaborating on an interdisciplinary project to study the effects of global climate change on the environment in the Baltic Sea. They have combined today's best climate models with models of additional factors that affect the environment in the Baltic Sea.

“There are plenty of studies showing the environmental impact of individual factors, or models showing global changes in the climate, but this is the first time that anyone has taken a detailed look at how these factors combine to affect a specific region. This makes this project unique,” says Jonathan Havenhand from the Department of Biological and Environmental Sciences at the University of Gothenburg.

Researchers have studied how well the models work by entering data from 1850 until 2006, and then comparing the models’ predictions with what actually happened during that period.

The models proved to be reasonably accurate, and were therefore used to predict what will happen in the Baltic Sea between now and 2098. The models show that the salt content in the Baltic Sea will fall and that the temperature will rise as a consequence of increases in air temperature and precipitation.

The increase in temperature will cause the oxygen content of the water to fall, making the effects of eutrophication more pronounced. The change in salt content may result in species that are currently at the edge of their dispersion area disappearing, leading to a decline in the diversity of species.

“One such example is the blue mussel, which cannot survive if the salt content is lower than it is at present in the Northern Baltic Sea. It feeds on algae and purifies large volumes of water. This makes it an important species. We can also expect cod stocks to fall, even if we restrict fishing, as the oxygen content, temperature and salt content will change so much that reproduction will become difficult,” says Jonathan Havenhand.

In their study, the researchers showed that despite these changes it may be possible to counteract the effects of global climate change on the environment in the Baltic Sea, for example by reducing the run-off of nutrients from land. One special feature of the study is that it quantifies the effects of such measures.

“We aren’t making any judgement about what should be done, we’re simply providing a tool to allow decision-makers to assess what needs to be done in order to achieve a given desired effect,” says Jonathan Havenhand.

But according to a questionnaire-based survey conducted among decision-makers in the countries around the Baltic Sea, those in power would prefer to wait. The results showed that while they might view climate change as a problem, it is perceived to be something relatively remote in terms of time.

This led researchers to the conclusion that more information is needed about the importance and urgency of measures to counteract the effects of climate change.

The results of the study will contribute to the Helsinki Commission’s (HELCOM) proposed action plan for the Baltic Sea.

This project was a three-year BONUS project as part of the EU’s initiative for the Baltic region. The results were published recently in Environmental Research Letters (Meier et al. Environ Res Lett. 7 (2012).

For more information please contact:
Jonathan Havenhand Dept. of Biological and Environmental Sciences
Tel.: +46 (0)31 786 96 82
Email: jon.havenhand@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>