Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change threatens marine environment in the Baltic Sea

22.10.2012
At the end of the 21st century, the temperature in the Baltic Sea will be higher and the salt content lower than at any time since 1850. If no action is taken, there may be major consequences for the marine environment.

“This is the first time anyone has taken a detailed look at how climate models and individual factors combine to affect a specific region,” says Jonathan Havenhand, researcher at the University of Gothenburg, Sweden.

A large number of researchers from countries around the Baltic Sea have been collaborating on an interdisciplinary project to study the effects of global climate change on the environment in the Baltic Sea. They have combined today's best climate models with models of additional factors that affect the environment in the Baltic Sea.

“There are plenty of studies showing the environmental impact of individual factors, or models showing global changes in the climate, but this is the first time that anyone has taken a detailed look at how these factors combine to affect a specific region. This makes this project unique,” says Jonathan Havenhand from the Department of Biological and Environmental Sciences at the University of Gothenburg.

Researchers have studied how well the models work by entering data from 1850 until 2006, and then comparing the models’ predictions with what actually happened during that period.

The models proved to be reasonably accurate, and were therefore used to predict what will happen in the Baltic Sea between now and 2098. The models show that the salt content in the Baltic Sea will fall and that the temperature will rise as a consequence of increases in air temperature and precipitation.

The increase in temperature will cause the oxygen content of the water to fall, making the effects of eutrophication more pronounced. The change in salt content may result in species that are currently at the edge of their dispersion area disappearing, leading to a decline in the diversity of species.

“One such example is the blue mussel, which cannot survive if the salt content is lower than it is at present in the Northern Baltic Sea. It feeds on algae and purifies large volumes of water. This makes it an important species. We can also expect cod stocks to fall, even if we restrict fishing, as the oxygen content, temperature and salt content will change so much that reproduction will become difficult,” says Jonathan Havenhand.

In their study, the researchers showed that despite these changes it may be possible to counteract the effects of global climate change on the environment in the Baltic Sea, for example by reducing the run-off of nutrients from land. One special feature of the study is that it quantifies the effects of such measures.

“We aren’t making any judgement about what should be done, we’re simply providing a tool to allow decision-makers to assess what needs to be done in order to achieve a given desired effect,” says Jonathan Havenhand.

But according to a questionnaire-based survey conducted among decision-makers in the countries around the Baltic Sea, those in power would prefer to wait. The results showed that while they might view climate change as a problem, it is perceived to be something relatively remote in terms of time.

This led researchers to the conclusion that more information is needed about the importance and urgency of measures to counteract the effects of climate change.

The results of the study will contribute to the Helsinki Commission’s (HELCOM) proposed action plan for the Baltic Sea.

This project was a three-year BONUS project as part of the EU’s initiative for the Baltic region. The results were published recently in Environmental Research Letters (Meier et al. Environ Res Lett. 7 (2012).

For more information please contact:
Jonathan Havenhand Dept. of Biological and Environmental Sciences
Tel.: +46 (0)31 786 96 82
Email: jon.havenhand@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>