Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing climate could alter meadows’ ecosystems

07.07.2010
Changing climate could affect the diversity of plants and animals, and we can get a glimpse of what this may look like by studying the effects of drought in a relatively pristine ecosystem, according to an Iowa State University researcher.

Diane Debinski has been studying the meadows in the Greater Yellowstone Ecosystem of the Rocky Mountains since 1992. She has found that if the area's climate becomes drier as the earth's temperature climbs, it could lead to a change in the types of plants and animals that live there.

To study the potential effects of climate change, Debinski has been conducting large-scale, long-term, observational studies of the plant and insect communities in 55 montane (mountainous) meadows in the ecosystem.

Debinski studied six different types of montane meadows that ranged from dry (xeric) to wet (hydric).

"It was our aim to look at the same sites year after year," said Debinski. "We know that the world changes and ecological communities change over time, but not many people look at the same research sites for a decade or more. I wanted a data set to look at changes in the communities over the long term."

Debinski and her colleagues were able to measure the changes in the plant community from 1997 to 2007, which included an extended drought. Her research was recently published in the journal Ecology.

According to Debinski, the shrubs that grow in the drier meadows (such as sagebrush) increased, while flowering plants decreased in number. Shrubs from drier meadows do not provide as much food for animals as flowering plants that grow in wetter meadows.

This may result from the way the plants get water, Debinski said. Shrubs generally have deeper roots and can obtain water from deeper in the soils. Flowering plants generally get water from nearer the surface. These types of changes could have important implications for wildlife in the montane meadows Debinski studied.

"In these meadows, as water became more scarce, that means less moisture for the plants," she said. "The flowering plants don't grow as well and therefore don't provide as much food to the animals. These types of changes in the plants could affect populations of elk, bison, as well as many other smaller animals, including insects."

Since there were fewer flowering plants in the drier years, pollinators such as butterflies were also becoming scarce in several of the plots Debinski and her colleagues studied. Two species of butterflies that live in the wetter meadows actually disappeared from her sampling sites for a year, but were observed again in later years.

Debinski plans to publish the results of her butterfly research soon.

Because there are six types of meadows, from wet to dry, Debinski was also able to examine which meadow type was most vulnerable to change.

The results showed that medium-moisture meadows -- neither wet nor dry -- are in the biggest danger of change.

"If wet meadows get a little drier, they're still wet," she said. "If dry meadows get a little drier, they are still dry. But the meadows with a medium amount of wetness are the ones that may be changing most."

One aspect of the study that Debinski thinks gives the results even more credibility is the location of the experiment, high in the Rocky Mountains.

"It is important to know what sorts of changes are happening in a place where people don't have much of an impact," she said. "The results of other studies done in other places can blame changes on human impact. Not so much here."

More recently Debinski and her colleagues have added an experimental aspect to the research by using snow removal and warming chambers to assess plant and insect responses in these meadows. The experimental approach will allow them to quantify how specific changes in soil moisture and temperature affect the plants and insects.

Diane Debinski | EurekAlert!
Further information:
http://www.iastate.edu
http://www.news.iastate.edu/news/2010/jul/debinski

Further reports about: Changing Mountains Rocky Mountains butterfly research flowering plant shrubs

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>