Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing climate could alter meadows’ ecosystems

07.07.2010
Changing climate could affect the diversity of plants and animals, and we can get a glimpse of what this may look like by studying the effects of drought in a relatively pristine ecosystem, according to an Iowa State University researcher.

Diane Debinski has been studying the meadows in the Greater Yellowstone Ecosystem of the Rocky Mountains since 1992. She has found that if the area's climate becomes drier as the earth's temperature climbs, it could lead to a change in the types of plants and animals that live there.

To study the potential effects of climate change, Debinski has been conducting large-scale, long-term, observational studies of the plant and insect communities in 55 montane (mountainous) meadows in the ecosystem.

Debinski studied six different types of montane meadows that ranged from dry (xeric) to wet (hydric).

"It was our aim to look at the same sites year after year," said Debinski. "We know that the world changes and ecological communities change over time, but not many people look at the same research sites for a decade or more. I wanted a data set to look at changes in the communities over the long term."

Debinski and her colleagues were able to measure the changes in the plant community from 1997 to 2007, which included an extended drought. Her research was recently published in the journal Ecology.

According to Debinski, the shrubs that grow in the drier meadows (such as sagebrush) increased, while flowering plants decreased in number. Shrubs from drier meadows do not provide as much food for animals as flowering plants that grow in wetter meadows.

This may result from the way the plants get water, Debinski said. Shrubs generally have deeper roots and can obtain water from deeper in the soils. Flowering plants generally get water from nearer the surface. These types of changes could have important implications for wildlife in the montane meadows Debinski studied.

"In these meadows, as water became more scarce, that means less moisture for the plants," she said. "The flowering plants don't grow as well and therefore don't provide as much food to the animals. These types of changes in the plants could affect populations of elk, bison, as well as many other smaller animals, including insects."

Since there were fewer flowering plants in the drier years, pollinators such as butterflies were also becoming scarce in several of the plots Debinski and her colleagues studied. Two species of butterflies that live in the wetter meadows actually disappeared from her sampling sites for a year, but were observed again in later years.

Debinski plans to publish the results of her butterfly research soon.

Because there are six types of meadows, from wet to dry, Debinski was also able to examine which meadow type was most vulnerable to change.

The results showed that medium-moisture meadows -- neither wet nor dry -- are in the biggest danger of change.

"If wet meadows get a little drier, they're still wet," she said. "If dry meadows get a little drier, they are still dry. But the meadows with a medium amount of wetness are the ones that may be changing most."

One aspect of the study that Debinski thinks gives the results even more credibility is the location of the experiment, high in the Rocky Mountains.

"It is important to know what sorts of changes are happening in a place where people don't have much of an impact," she said. "The results of other studies done in other places can blame changes on human impact. Not so much here."

More recently Debinski and her colleagues have added an experimental aspect to the research by using snow removal and warming chambers to assess plant and insect responses in these meadows. The experimental approach will allow them to quantify how specific changes in soil moisture and temperature affect the plants and insects.

Diane Debinski | EurekAlert!
Further information:
http://www.iastate.edu
http://www.news.iastate.edu/news/2010/jul/debinski

Further reports about: Changing Mountains Rocky Mountains butterfly research flowering plant shrubs

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>