Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The CANON experiments – Tracking algal blooms by “going with the flow”

15.10.2010
In mid-September a small fleet of ships and robotic submersibles performed a novel experiment about 160 kilometers (100 miles) off the Central California coast.

The vessels spent most of their time circling around a floating robotic DNA lab, which drifted southward in the California Current.

This research, part of MBARI's CANON (Controlled, Agile, and Novel Observing Network) project, is all about "going with the flow"—tracking and studying how communities of microscopic marine organisms change as they are transported by ocean currents.

Conducting experiments in two very different settings

Led by MBARI biological oceanographer Francisco Chavez, during September, CANON researchers studied open-ocean water in the California Current, a meandering band of water that flows southeastward from Oregon to Northern Baja California. In October, a much larger cohort of researchers is studying the highly productive, but rapidly changing nearshore environment of Monterey Bay.

These two field experiments pose different challenges and opportunities for ocean researchers. Studying the offshore waters is challenging because humans and robotic vehicles must travel long distances and remain at sea for weeks at a time. Life in these offshore waters is often dominated by tiny organisms that are difficult to see even under a high-powered microscope, and often cannot be grown in the laboratory. These tiny organisms feed life in the ocean and have a strong influence on Earth's climate because they are so widespread.

Nearshore waters are more accessible to scientists and harbor dense populations of algae and other micro-organisms, as well as larger animals. However, this environment is affected by a web of complex interactions between the ocean, atmosphere, seafloor, land, runoff, and human activities. Because of these diverse influences, winds, currents, waves, and chemical and biological conditions often change rapidly, over periods of hours to days. This often makes it difficult for scientists to track and study ephemeral ocean features, such as algal blooms.

During both the nearshore and offshore experiments, CANON researchers simultaneously collected data on the physical and chemical properties of the ocean, along with detailed information on the algae, bacteria, and microscopic animals present. The researchers also measured the abundance of key organisms, determined how fast they were growing, and estimated how fast they were dying off or being consumed. Gathering all of this information simultaneously provides a more comprehensive picture of how the physical and chemical properties of the ocean affect the growth of entire communities of microscopic organisms.

Observing the microscopic life in moving water for more than a few hours is no easy feat. However, the CANON project builds on MBARI’s previous large-scale, multi-instrument, multi-institutional field programs, such as the Autonomous Ocean Sampling Network (AOSN). In contrast to these previous experiments, however, the CANON experiments focus on biological as well as physical processes.

The September experiment: Drifting with the California Current

The first CANON field experiment began on September 9, 2010, when MBARI’s flagship research vessel, the Western Flyer, headed westward from Moss Landing. The ship first headed west until it was 350 miles offshore, collecting water samples along the way. After analyzing these seawater samples and comparing them with satellite images of sea-surface temperature, the researchers attempted to locate the ever-changing boundaries of the California Current.

After completing this lengthy transect, the Western Flyer headed back toward the eastern (shoreward) boundary of the California Current, about 160 kilometers (100 miles) from the coast. There it met up with the research vessel Zephyr, host ship for MBARI's autonomous underwater vehicles (AUVs).

Once "on station" in the California Current, researchers on board the Western Flyer deployed a large, drifting buoy carrying a robotic DNA lab known as the Environmental Sample Processor (ESP). The Zephyr then deployed MBARI's upper-water-column AUV. At this point the field experiment began.

Drifting southward within the California Current, the ESP began automatically collecting water samples and analyzing the DNA of microscopic organisms within these samples. The Western Flyer followed the ESP as it drifted, allowing researchers to download data from the ESP and to collect water samples for later analysis on shore. Meanwhile, the AUV circled around the ESP, collecting detailed information about the physical and chemical properties of the water around it in real time.

The September CANON experiment involved a number of "firsts" for several research groups. For example, the ESP has been used in moored experiments for years, but this was the first time it collected data while drifting with the currents. In addition, the ESP was used not just to study genetic material, but to measure the amounts of important biological compounds generated by microscopic bacteria. This will help researchers understand how these bacteria are affecting the planktonic community and the rest of the food chain.

Similarly, programming MBARI's AUV to swim in circles (actually boxes) around a moving object (the drifting ESP) was a very complicated task. This provided a serious test for the AUV's control and scheduling system, known as T-REX.

The drift experiment showed how complex a problem CANON is tackling. Waters were moving in different directions near the surface and just below, changing even further with depth. Had only a few days of information been collected it might have been impossible to discern what was going on. After the third day, however, the experiment started to pay off and scientists started to better understand on the complexities of the physical and chemical properties of the water. Observations showed that the photosynthetic community was dominated by very small organisms, termed picoplankton, and they were floating in relatively high levels of nitrate. The nitrate, however, was not getting utilized, and the picoplankton seemed to be using ammonia as its nitrogen source. This type of activity is common in waters that are iron-limited. Information collected previously suggested that this phenomena might occur in this part of the world during autumn but the extent of the region, covering hundreds of square kilometers surprised the CANON scientists.

Combining diverse skills for a challenging project

This project involved engineers, marine operations staff, and researchers from MBARI and other institutions. The MBARI research team for the September experiment included physical biological oceanographers Francisco Chavez and John Ryan; marine biologists Alexandra Worden and Chris Scholin; and engineer Kanna Rajan.

Research organizations participating in the project include the University of Washington (genomics) and the Massachusetts Institute of Technology (genomics). The Central and Northern California Ocean Observing System (CeNCOOS) will help get information from these experiments out to policy makers, marine resource managers, and the public.

For more information on this story, please contact:

Judith Connor: (831) 775-1728, conn@mbari.org
Kim Fulton-Bennett: (831) 775-1835, kfb@mbari.org

Nancy Barr | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2010/canon/canon_sept.html

More articles from Ecology, The Environment and Conservation:

nachricht Saving coral reefs depends more on protecting fish than safeguarding locations
03.09.2015 | Wildlife Conservation Society

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>