Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable Products May Be Bad For The Environment

31.05.2011
Research from North Carolina State University shows that so-called biodegradable products are likely doing more harm than good in landfills, because they are releasing a powerful greenhouse gas as they break down.

“Biodegradable materials, such as disposable cups and utensils, are broken down in landfills by microorganisms that then produce methane,” says Dr. Morton Barlaz, co-author of a paper describing the research and professor and head of NC State’s Department of Civil, Construction, and Environmental Engineering. “Methane can be a valuable energy source when captured, but is a potent greenhouse gas when released into the atmosphere.”

And the U.S. Environmental Protection Agency (EPA) estimates that only about 35 percent of municipal solid waste goes to landfills that capture methane for energy use. EPA estimates that another 34 percent of landfills capture methane and burn it off on-site, while 31 percent allow the methane to escape.

“In other words,” Barlaz says, “biodegradable products are not necessarily more environmentally friendly when disposed in landfills.”

This problem may be exacerbated by the rate at which these man-made biodegradable materials break down. Federal Trade Commission (FTC) guidelines call for products marked as “biodegradable” to decompose within “a reasonably short period of time” after disposal. But such rapid degradation may actually be environmentally harmful, because federal regulations do not require landfills that collect methane to install gas collection systems for at least two years after the waste is buried. If materials break down and release methane quickly, much of that methane will likely be emitted before the collection technology is installed. This means less potential fuel for energy use, and more greenhouse gas emissions.

As a result, the researchers find that a slower rate of biodegradation is actually more environmentally friendly, because the bulk of the methane production will occur after the methane collection system is in place. Some specific biodegradable products such as bags that hold yard waste and are always sent to composting or anaerobic digestion facilities were not included in the study.

“If we want to maximize the environmental benefit of biodegradable products in landfills,” Barlaz says, “we need to both expand methane collection at landfills and design these products to degrade more slowly – in contrast to FTC guidance.”

The paper, “Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model,” was co-authored by Barlaz and NC State Ph.D. student James Levis, and was published online May 27 by the journal Environmental Science & Technology. The research was supported by Procter & Gamble and the Environmental Research and Education Foundation.

Dr. Morton Barlaz, (919) 515-7212 or barlaz@ncsu.edu
OR
Matt Shipman, NC State News Services, (919) 515-6386 or matt_shipman@ncsu.edu

Matt Shipman | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>