Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agricultural phosphorus recovery

19.11.2013
Phosphorus is an important plant nutrient for agriculture; however, phosphate rock reserves are limited.

In the EU-funded PhosFarm project, research and SME partners aim to make organic phosphorus from agricultural residues accessible as a resource for phosphate fertiliser salts. Using immobilised enzymes, organic phosphorus compounds are released from the organic matter and recovered as phosphate.


In the PhosFarm project valuable soil improver and mineral fertiliser salt products are recovered from agricultural residues.

© Fraunhofer IGB

Phosphorus is an elemental nutrient in agriculture. In response to the increasing demand for phosphorus in the food, biofuels and biobased materials industries, global consumption of phosphate has risen significantly and will continue to increase.

In 2008, approximately 1.4 million tonnes of phosphorus were consumed for the production of synthetic phosphate fertilizer. Moreover, phosphate rock reserves are non-renewable and controlled by only a few countries such as China, Morocco, Tunisia and the U.S.A. As a result, Europe is completely dependent on imports from these countries to cover phosphorus demand.

Besides non-renewable reserves, alternative phosphate resources include municipal wastewater and agricultural organic residues such as livestock manure or digestate from biogas plants. Although new technologies have already been developed for the recovery of dissolved inorganic phosphates in the liquid fractions of municipal and agricultural wastes, solid residues remain a largely untapped source for phosphorus in its organic form. In solid fractions, organic phosphorus bound in biochemical molecules such as phospholipids, nucleotides and nucleic acids offer a bountiful source of phosphorus.

These agricultural residues represent a huge additional reservoir for phosphate recovery: Annually, more than 1,800 million tonnes of manure are generated in the EU and the amount of digestion residues is still increasing. Especially in swine and poultry manure, up to 50 per cent of the overall phosphorus is present in the organic form. In the PhosFarm project, this organic residual matter is to be made accessible as a valuable phosphate resource. The project consortium coordinated by the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB wants to develop a process and realise a pilot plant that features a controlled enzymatic release of organically bound phosphate, enabling up to 90 per cent recovery of total phosphorus.

This novel strategy is to be carried out using phosphate hydrolysing enzymes immobilised onto suited carriers. “In preliminary experiments, we could show that these enzymes can release inorganic phosphate from model compounds,” explains Jennifer Bilbao, who manages the project at the Fraunhofer IGB. After separation of the solid fraction, the released phosphate dissolved in the liquid fraction can be precipitated as magnesium ammonium phosphate and calcium phosphate, which in turn are directly usable as high value fertilising salts.

The remaining dewatered solid phase is dried with an energy efficient drying process operating with superheated steam instead of hot air. The generated organic soil amendment substrate helps to improve soil fertility. Moreover, according to the requirements of crop species and depending on the soil conditions, the organic soil improvers can be mixed with the recovered mineral fertiliser salts to a suited nutrient composition with a defined N/P ratio.

Bilbao describes the advantages of the envisioned concept: “With our mineral fertiliser salt and organic soil improver products, synthetic phosphate fertilisers are saved and overfertilisation from the application of livestock manure on the agricultural fields is prevented. This realisation of efficient phosphorus recovery not only generates valuable products from an otherwise wasted residue, but at the same time achieves environmentally friendly closed loop recycling.

Since September 2013, “PhosFarm – Process for sustainable phosphorus recovery from agricultural residues by enzymatic process to enable a service business for the benefit of European farm community” – has been funded within the scope of the 7th Framework Research Programme of the EU (Grant Agreement No. 605771). The project partners, besides the Fraunhofer IGB, are research partners VITO (Belgium) and the Swedish University of Agricultural Sciences (SLU, Sweden), as well as the SMEs Chiral Vision (Netherlands), Geltz Umwelttechnologie GmbH (Germany), Heckmann Maschinenbau und Verfahrenstechnik GmbH (Germany), Purines Almazan, S.L. (Spain), Agroenergie Hohenlohe GmbH (Germany), ASB Grünland Helmut Aurenz GmbH (Germany) and Servimed Almazan, S.L. (Spain).

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:
http://www.igb.fraunhofer.de
http://www.igb.fraunhofer.de/en/press-media/press-releases/2013/phosfarm-agricultural-phosphorus-recovery.html

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>