Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agricultural phosphorus recovery

19.11.2013
Phosphorus is an important plant nutrient for agriculture; however, phosphate rock reserves are limited.

In the EU-funded PhosFarm project, research and SME partners aim to make organic phosphorus from agricultural residues accessible as a resource for phosphate fertiliser salts. Using immobilised enzymes, organic phosphorus compounds are released from the organic matter and recovered as phosphate.


In the PhosFarm project valuable soil improver and mineral fertiliser salt products are recovered from agricultural residues.

© Fraunhofer IGB

Phosphorus is an elemental nutrient in agriculture. In response to the increasing demand for phosphorus in the food, biofuels and biobased materials industries, global consumption of phosphate has risen significantly and will continue to increase.

In 2008, approximately 1.4 million tonnes of phosphorus were consumed for the production of synthetic phosphate fertilizer. Moreover, phosphate rock reserves are non-renewable and controlled by only a few countries such as China, Morocco, Tunisia and the U.S.A. As a result, Europe is completely dependent on imports from these countries to cover phosphorus demand.

Besides non-renewable reserves, alternative phosphate resources include municipal wastewater and agricultural organic residues such as livestock manure or digestate from biogas plants. Although new technologies have already been developed for the recovery of dissolved inorganic phosphates in the liquid fractions of municipal and agricultural wastes, solid residues remain a largely untapped source for phosphorus in its organic form. In solid fractions, organic phosphorus bound in biochemical molecules such as phospholipids, nucleotides and nucleic acids offer a bountiful source of phosphorus.

These agricultural residues represent a huge additional reservoir for phosphate recovery: Annually, more than 1,800 million tonnes of manure are generated in the EU and the amount of digestion residues is still increasing. Especially in swine and poultry manure, up to 50 per cent of the overall phosphorus is present in the organic form. In the PhosFarm project, this organic residual matter is to be made accessible as a valuable phosphate resource. The project consortium coordinated by the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB wants to develop a process and realise a pilot plant that features a controlled enzymatic release of organically bound phosphate, enabling up to 90 per cent recovery of total phosphorus.

This novel strategy is to be carried out using phosphate hydrolysing enzymes immobilised onto suited carriers. “In preliminary experiments, we could show that these enzymes can release inorganic phosphate from model compounds,” explains Jennifer Bilbao, who manages the project at the Fraunhofer IGB. After separation of the solid fraction, the released phosphate dissolved in the liquid fraction can be precipitated as magnesium ammonium phosphate and calcium phosphate, which in turn are directly usable as high value fertilising salts.

The remaining dewatered solid phase is dried with an energy efficient drying process operating with superheated steam instead of hot air. The generated organic soil amendment substrate helps to improve soil fertility. Moreover, according to the requirements of crop species and depending on the soil conditions, the organic soil improvers can be mixed with the recovered mineral fertiliser salts to a suited nutrient composition with a defined N/P ratio.

Bilbao describes the advantages of the envisioned concept: “With our mineral fertiliser salt and organic soil improver products, synthetic phosphate fertilisers are saved and overfertilisation from the application of livestock manure on the agricultural fields is prevented. This realisation of efficient phosphorus recovery not only generates valuable products from an otherwise wasted residue, but at the same time achieves environmentally friendly closed loop recycling.

Since September 2013, “PhosFarm – Process for sustainable phosphorus recovery from agricultural residues by enzymatic process to enable a service business for the benefit of European farm community” – has been funded within the scope of the 7th Framework Research Programme of the EU (Grant Agreement No. 605771). The project partners, besides the Fraunhofer IGB, are research partners VITO (Belgium) and the Swedish University of Agricultural Sciences (SLU, Sweden), as well as the SMEs Chiral Vision (Netherlands), Geltz Umwelttechnologie GmbH (Germany), Heckmann Maschinenbau und Verfahrenstechnik GmbH (Germany), Purines Almazan, S.L. (Spain), Agroenergie Hohenlohe GmbH (Germany), ASB Grünland Helmut Aurenz GmbH (Germany) and Servimed Almazan, S.L. (Spain).

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:
http://www.igb.fraunhofer.de
http://www.igb.fraunhofer.de/en/press-media/press-releases/2013/phosfarm-agricultural-phosphorus-recovery.html

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>