Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Agricultural phosphorus recovery

Phosphorus is an important plant nutrient for agriculture; however, phosphate rock reserves are limited.

In the EU-funded PhosFarm project, research and SME partners aim to make organic phosphorus from agricultural residues accessible as a resource for phosphate fertiliser salts. Using immobilised enzymes, organic phosphorus compounds are released from the organic matter and recovered as phosphate.

In the PhosFarm project valuable soil improver and mineral fertiliser salt products are recovered from agricultural residues.

© Fraunhofer IGB

Phosphorus is an elemental nutrient in agriculture. In response to the increasing demand for phosphorus in the food, biofuels and biobased materials industries, global consumption of phosphate has risen significantly and will continue to increase.

In 2008, approximately 1.4 million tonnes of phosphorus were consumed for the production of synthetic phosphate fertilizer. Moreover, phosphate rock reserves are non-renewable and controlled by only a few countries such as China, Morocco, Tunisia and the U.S.A. As a result, Europe is completely dependent on imports from these countries to cover phosphorus demand.

Besides non-renewable reserves, alternative phosphate resources include municipal wastewater and agricultural organic residues such as livestock manure or digestate from biogas plants. Although new technologies have already been developed for the recovery of dissolved inorganic phosphates in the liquid fractions of municipal and agricultural wastes, solid residues remain a largely untapped source for phosphorus in its organic form. In solid fractions, organic phosphorus bound in biochemical molecules such as phospholipids, nucleotides and nucleic acids offer a bountiful source of phosphorus.

These agricultural residues represent a huge additional reservoir for phosphate recovery: Annually, more than 1,800 million tonnes of manure are generated in the EU and the amount of digestion residues is still increasing. Especially in swine and poultry manure, up to 50 per cent of the overall phosphorus is present in the organic form. In the PhosFarm project, this organic residual matter is to be made accessible as a valuable phosphate resource. The project consortium coordinated by the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB wants to develop a process and realise a pilot plant that features a controlled enzymatic release of organically bound phosphate, enabling up to 90 per cent recovery of total phosphorus.

This novel strategy is to be carried out using phosphate hydrolysing enzymes immobilised onto suited carriers. “In preliminary experiments, we could show that these enzymes can release inorganic phosphate from model compounds,” explains Jennifer Bilbao, who manages the project at the Fraunhofer IGB. After separation of the solid fraction, the released phosphate dissolved in the liquid fraction can be precipitated as magnesium ammonium phosphate and calcium phosphate, which in turn are directly usable as high value fertilising salts.

The remaining dewatered solid phase is dried with an energy efficient drying process operating with superheated steam instead of hot air. The generated organic soil amendment substrate helps to improve soil fertility. Moreover, according to the requirements of crop species and depending on the soil conditions, the organic soil improvers can be mixed with the recovered mineral fertiliser salts to a suited nutrient composition with a defined N/P ratio.

Bilbao describes the advantages of the envisioned concept: “With our mineral fertiliser salt and organic soil improver products, synthetic phosphate fertilisers are saved and overfertilisation from the application of livestock manure on the agricultural fields is prevented. This realisation of efficient phosphorus recovery not only generates valuable products from an otherwise wasted residue, but at the same time achieves environmentally friendly closed loop recycling.

Since September 2013, “PhosFarm – Process for sustainable phosphorus recovery from agricultural residues by enzymatic process to enable a service business for the benefit of European farm community” – has been funded within the scope of the 7th Framework Research Programme of the EU (Grant Agreement No. 605771). The project partners, besides the Fraunhofer IGB, are research partners VITO (Belgium) and the Swedish University of Agricultural Sciences (SLU, Sweden), as well as the SMEs Chiral Vision (Netherlands), Geltz Umwelttechnologie GmbH (Germany), Heckmann Maschinenbau und Verfahrenstechnik GmbH (Germany), Purines Almazan, S.L. (Spain), Agroenergie Hohenlohe GmbH (Germany), ASB Grünland Helmut Aurenz GmbH (Germany) and Servimed Almazan, S.L. (Spain).

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>