Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A colorful combination

The ability of bacteria to change the body color of aphids has ecological consequences

A bacterium that can live symbiotically inside the pea aphid, Acyrthosiphon pisum, is able to change the insect’s body color from red to green, a RIKEN-led team of molecular entomologists has found[1].

Because body color affects how other animals are attracted to aphids, infection with the bacterium is expected to impact on interactions with other symbiotic organisms, predators and parasites. Studies of the molecular mechanism behind the color change could lead to technologies for generating pigments more efficiently, and also for changing the appearance of some organisms, the researchers say.

Both red and green forms of pea aphid occur in natural populations. Previous research by other workers has shown that body color is correlated with the presence or absence of a single gene, and that red is dominant. Ecologically, the balance between the colors is maintained because the most important predators, ladybug beetles, preferentially eat red aphids, while parasitoid wasps attack the green form.

While screening aphids collected in France, Tsutomu Tsuchida from the RIKEN Advanced Science Institute in Wako, together with colleagues from France, and from other Japanese research institutions, found several strains of green aphids with red young that turned green as adults.

Studies by Tsuchida and other researchers have demonstrated that symbiotic bacteria play a role in the adaptation of pea aphids to particular varieties of plants and to high temperature, as well as in the development of resistance to natural enemies. On investigating the symbiotic bacteria in Western Europe, the researchers found that about 8% of pea aphids are infected by a previously unrecognized species of Rickettsiella bacteria. Measurements of growth rate, body size and fecundity of infected aphids showed no negative impact on fitness.

By generating separate lines of aphids infected and uninfected by Rickettsiella, Tsuchida and his colleagues were able to show that uninfected red aphids always retained their color, as did all green aphids. Not all infected red aphids turned green, but the color change from red to green was always associated with Rickettsiella (Fig. 1). In fact, the intensity of green color depended on the level of infection. The researchers thus concluded that the color change depended on an interaction between the Rickettsiella and aphid genomes.

“We are now extensively analyzing the genome sequence of the symbiotic bacterium and symbiont-induced gene expression of the host aphid,” Tsuchida says. “These analyses should show us the molecular and metabolic interplay that leads to the body color change.”

The corresponding author for this highlight is based at the Molecular Entomology Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., Simon, J.-C. & Fukatsu, T. Symbiotic bacterium modifies aphid body color. Science 330, 1102–1104 (2010).

gro-pr | Research asia research news
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>