Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens develops new electric arc furnace for efficient electric steel production

12.05.2011
Low conversion costs, high productivity, greater environmental compatibility

The Simetal EAF Quantum electric arc furnace from Siemens combines tried-and-tested elements of preheating furnace technology with a number of new developments. These include a new scrap charging process, an efficient preheating system, a new tilting concept for the lower shell, and an optimized tapping system.


Simetal Quantum EAF from Siemens: Computer-animated general view of the plant.

A reference furnace with a tapping weight of 100 tons achieves an output of 1.35 million tons of crude steel per year with a tap-to-tap time of 33 minutes. The electrical energy consumption, at just 280 kilowatt-hours per ton, is considerably lower than that of a conventional electric arc furnace. Coupled with a lower consumption of electrodes and oxygen, this results in a total specific conversion cost advantage of around 20 percent.

The Simetal EAF Quantum is designed as a shaft furnace. Unlike a conventional electric arc furnace, it is not necessary to raise the roof and retract the electrodes in order to charge the furnace. The other benefit of charging via a shaft is that the scrap is preheated by the offgas of the melting process, which significantly reduces energy requirements.

The combination of a fixed shaft structure and a moveable lower shell provides enhanced air-tightness and minimizes the ingress of atmospheric air. In combination with an automated offgas stream redirection system and a special hood to capture dust and offgases during charging, process emissions are considerably lower in the steel plant. This reduces the cost and size of the dedusting system and the canopy installation substantially.

The electric arc furnace is charged with scrap by means of an elevator system. A hopper transports the scrap from a charging station in the scrap yard to the shaft, eliminating the need for cranes and baskets. A defined duty cycle or a precise charging time can be specified and, if required, the charging process can also be fully automated. The shaft has a trapezoidal shape and is equipped with a retaining system. This facilitates better distribution of the scrap and improves direction of the offgas to optimize heat transfer. After the scrap has been preheated, the fingers of the retaining system are opened, and the scrap passes into the melting bath which has a maximum capacity of 70 tons. The fingers can then be closed immediately so that the next scrap charge can be fed in and preheated.

Melting the scrap in a large melting bath allows pure flat bath operation. This is also assisted by efficient preheating of the following scrap charge. In conjunction with a patented, slag-free tapping system, charging, tapping and taphole refilling can all be done under power on. This leads to extremely short tap-to-tap times and high productivity. The transfer of heat from the melting bath into the preheated scrap, and the homogenization of the melt are assisted by a bottom stirring system with argon. Supplying electrical energy continuously in flat bath operation not only improves productivity but also avoids net disturbances, such as flicker. Compared to conventional furnaces with the same productivity, the processing concept using flat bath operation also enables a lower-powered furnace transformer to be installed, which reduces investment costs.

The complete roof-shaft structure is a fixed installation, the furnace tapping and deslagging movements are made by the furnace shell only. The shell is installed on a base frame with cylinders and guides and can be tilted to both the tapping and slag side. The portal with the electrode lifting system and the lances is not tilting, but only swinging out for electrode slipping and fast roof center piece exchange. Heavy stress from furnace tilting with all its consequences on support and bearing, high current cables and gantry is not existent. The furnace shell can be easily moved and transported with the ladle car for easy maintenance work and fast shell exchange. Oxygen and coal injectors are installed in the roof only, minimizing the installations and pipework required on the furnace shell.

Further information about solutions for steel works, rolling mills and processing lines is available at: http://www.siemens.com/metals

Simetal Quantum EAF from Siemens: Computer-animated general view of the plant.
The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation, building and lighting technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 204,000 employees worldwide (September 30), Siemens Industry achieved in fiscal year 2010 total sales of approximately €34.9 billion. www.siemens.com/industry

The Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities comprising the business activities of Siemens VAI Metals Technologies, Water Technologies and Industrial Technologies. Activities include engineering and installation, operation and service for the entire life cycle. A wide-ranging portfolio of environmental solutions helps industrial companies to use energy, water and equipment efficiently, reduce emissions and comply with environmental guidelines. With around 29,000 employees worldwide (September 30), Siemens Industry Solutions posted sales of €6.0 billion in fiscal year 2010. www.siemens.com/industry-solutions

Dr. Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com/metals

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>