Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From prototypes to entering new markets - LASHARE lends a helping hand to European manufacturing

Small and medium-sized enterprises are often confronted with the challenge of how to take new manufacturing processes, designed to facilitate efficient production, and make them accessible to users in industry.

This is an area where laser-based manufacturing processes have long led the way. Yet making these developments usable in industry, and opening up new markets, calls for a precise definition of the technical requirements, as well as in-depth knowledge of the market, combined with networking between users, suppliers and research institutes.

Now the LASHARE project, co-funded by the EU, has been launched to give more than 30 SMEs a helping hand, bringing together six of the most renowned European research institutes under the leadership of the Fraunhofer Institute for Laser Technology ILT. The ambitious aim of the project is to enhance the competitiveness of the European laser industry by accelerating technology transfer.

Often, new laser-based manufacturing techniques employ specific, standalone solutions that have previously only been demonstrated in a laboratory setting. In many cases these innovations are developed by small and medium-sized enterprises (SMEs), which possess the flexibility required to find a speedy solution to the problem at hand. However there are many possible pitfalls in getting from a lab-demonstrated solution to industrially robust manufacturing equipment. It may be, for instance, that parts of the solution were developed at a time when the final specifications were still unknown or that the components are not sufficiently robust for everyday use. As an SME’s business success relies heavily on a quick market launch, and securing user acceptance for its new technologies and products, LASHARE will help minimize the risks involved in this process and strengthen Europe as a leading manufacturing location, by helping innovative manufacturing technologies get to market more quickly.

Catalysts for technology transfer

On September 25-27, 2013 Fraunhofer ILT hosted the launch event of the EU co-funded LASHARE project, which will run for four years with a budget of almost 15 million euros. Held in Aachen, the event brought together 38 partners from industry and research to determine relevant targets, metrics and procedures for the “LASHARE Assessment Framework”. This framework provides the basis to accelerate the development of demonstrated laser-based equipment and help prepare it for manufacturing. The technologies under assessment are compared with the levels of maturity seen in other established technologies in their sector, helping to accelerate the process toward a demand driven, industrially robust solution.

Rapid market launch for a variety of laser applications

LASHARE helps small and medium-sized partners, in the role of suppliers, to develop the laser-based equipment with a view to improving new manufacturing processes and making sure they respond to current user needs regarding technical implementation. To accomplish this LASHARE has launched fourteen “Laser-based Equipment Assessments” (LEAs) for a diverse array of laser applications ranging from large-scale technologies such as the welding of ship components to nanotechnologies such as the structuring of surfaces using ultrashort pulse lasers.

First, users define the industrial requirements for the laser-based equipment, which they will later evaluate in an industrial-scale manufacturing setting at the end of the LEA. Research partners, working with the users and suppliers, will establish the “LASHARE Assessment Framework” which will define the best technical solution for the requirements provided. Finally, suppliers will use the results from the “LASHARE Assessment Framework”, and implement robust laser-based solutions that meet end-user requirements. In this way, LEAs speed up the t transfer of laboratory solutions to real manufacturing applications that can establish themselves on the market quickly and reliably – the key to market success.

Fourteen LEAs are running from the beginning of the project and will be joined by eight to twelve others during the project through a competitive call. LASHARE focuses on SMEs and enables them to bring new products to market to the benefit of European industry. All in all, more than 30 SME partners will benefit from the support of the FP7-FoF (Factories of the Future) program.


M.Sc. Dipl.-Ing. (FH) B.Eng. (hon) Ulrich Thombansen
Process Control and System Technology Group
Phone +49 241 8906-320
Dr. Arnold Gillner
Head of the competence area Laser Material Processing
Phone +49 241 8906-148

Petra Nolis | Fraunhofer-Institut
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>