Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Advanced Turbine Engine Materials Key to Higher Efficiency, Lower Emissions

Challenged to produce propulsion systems with higher efficiency and lower emissions, aerospace turbine engine manufacturers are pursuing solutions that range from the traditional to the radical.

Mature technologies are being implemented on legacy systems, evolving materials and process technologies are being pursued for application within fielded and next-generation systems, and revolutionary materials and process technologies are being developed for radical changes in future turbine engine systems.

Authors Kenneth A. Green and David U. Furrer of Rolls-Royce Corporation, Indianapolis, describe the trends in developing “Advanced Turbine Engine Materials” in an article available free of charge from ASM International’s Advanced Materials & Processes website at

Additional coverage of advances in novel and engineered materials systems and processes for aerospace applications will be presented at the AeroMat 2009 Conference & Exposition, to be held June 7-11 in Dayton, Ohio. For more information about AeroMat, visit

Green and Furrer estimate that transportation as a sector contributes approximately 20 percent of global emissions. Therefore, turbine engine manufacturers are stepping up research on more efficient fuel combustion. A significant reduction of emissions may be possible by improved specific fuel consumption, which reduces the fuel requirements of the engine and will also ease the burden of extracting increasingly scarce natural resources. The European Union is working to implement an emissions trading scheme, which will include aviation, by 2012. To contend with this and foreseeable regulations, reductions in fuel consumption and emissions are required.

Linking design, materials, and manufacturing technologies by means of computer modeling and simulation is now a requirement for high-performance, high-efficiency components and systems. Designs depend on materials whose properties depend on the manufacturing route. Models allow for location-specific mechanical property prediction, which supports design for manufacturing and optimization of materials and manufacturing.

Modeling and simulation are also being applied to optimize established materials and processes. Revolutionary materials and process technologies have the potential to significantly improve efficiency and “green” capability of turbine engines. By definition they start at a low maturity level and require development, assessment, and validation before being applied to any future system. However, these high-risk/high-payoff technologies, if successful in achieving aggressive performance targets, may enable new component and/or system designs that enable major improvements in overall capability and performance.

An example of this might be ultra-high temperature ceramic materials, which if capable of being designed and manufactured into real components, could radically change current system designs. Even if the ultimate goal is not achieved, the benefits from the technology development effort must be captured and utilized to the greatest extent possible.

Efforts are also aggressively being pursued to assess the impact of emerging materials and processes on fuel consumption. Within these efforts, a systems based approach is being applied, with final engine performance the result of closely linked materials, manufacturing process, and design. The impact of these can be simulated in a “rubber” engine, a model in which materials and designs can be “stretched” and optimized.

The big drivers in an overall propulsion system will be those materials and manufacturing technologies that can support higher engine operating temperature, support reduced weight, provide increased strength, and/or enable tighter sealing and dimensional control. Higher engine operating temperature can be directly related to increased fuel efficiency. Weight reductions through lower-density or higher strength materials also provide for efficiency improvements. Stronger material can reduce the mass of individual components and, more significantly, can provide for reduced mass of associated components. Improved sealing capabilities can also be directly related to gains in performance and efficiency.

To achieve these goals, candidate materials for further development and implementation into future turbine engine systems include higher temperature compressor/turbine disks and airfoils, shafting with higher strength and higher modulus, ceramic matrix composites, and high-temperature organic matrix composites. Manufacturing methods must enable closer control of dimensional tolerances, geometry, and many other parameters.

With reduced fuel burn as the key metric, the high payoff materials and processes can be readily identified. Once the assessment has identified a series of technologies that can provide a significant improvement in efficiency, efforts are initiated to bring them up to the required maturity level for insertion into propulsion systems.

Rego Giovanetti | Newswise Science News
Further information:

More articles from Machine Engineering:

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>