Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than wind in the datacentre

22.01.2014
EU launches initiative to increase the use of renewable energy in datacentres - Professorship Technical Thermodynamics of TU Chemnitz is involved in the project `RenewIT´

In October 2013 started the project RenewIT, which is funded for three years by the European Union. It explores how data centres can be designed and operated in compliance with a more efficient use of renewable energy.

In addition to partners from Spain, Italy, Great Britain and the Netherlands also the Professorship Technical Thermodynamics of Technische Universität Chemnitz is involved.

"We are focused on cooling techniques and renewable energy sources. The power supply systems shall be designed and simulated for different locations in Europe," said PD Dr. Thorsten Urbaneck Head of `Thermal Energy Storage´ at the Professorship Technical Thermodynamics.

“Currently, only a minority of European datacentres derive energy from renewable sources. Of those that do, the motivation is usually to gain positive publicity or curry favour with regulators rather than for purely commercial reasons,” said Andrew Donoghue of 451 Research and project spokesperson.

The RenewIT project, co-funded by the EU with a budget of 3.6 million Euros, will develop tools that will help datacentre operators to develop a more compelling business case for using on-site sources of renewable energy – such as solar, wind and biomass - and renewable cooling including outside air cooling and sea water cooling.

“The main roadblocks to using renewable energy to power datacentres are the perceived costs and the lack of tools to help operators make decisions about renewable energy. This project aims to overcome some of these obstacles by designing tools to evaluate the environmental performance and the share of renewable energy sources in the emerging concept of Net Zero Energy datacentres,” added Dr. Jaume Salom of IREC and RenewIT project coordinator.

The main challenges in using renewable energy for datacentre power are cost, capacity, lack of integration and the unreliability of its implementation. For example, existing datacentre infrastructure is geared to a continuous power flow but renewable sources, such as solar and wind, fluctuate depending on the day, time and the season. The RenewIT project plans to develop tools to help match the intermittent flow of energy from onsite renewables with the applications and workloads being executed by the datacentre.

The RenewIT project will focus on five main outcomes:

The RenewIT Tool: This will be a web-based planning tool to help datacentre owners, operators and design organisations understand the economic, energy and sustainability related costs of building a facility that uses a high-proportion of on-site or grid renewable energy.

Workload management and scheduling: RenewIT consortium partner, Barcelona Supercomputing Centre, will lead efforts in this area, developing algorithms for scheduling workloads within a facility, or between facilities using a monitoring and control platform engineered by Loccioni Group.

Develop concepts for integration in datacentres: The team will quantify the benefits of various energy concepts. These concepts will use a holistic approach that integrates various solutions:
- Renewable heat sources (biomass, solar thermal, geothermal)
- Renewable power generation (wind, solar, photovoltaic)
- Renewable cooling (fresh/free air cooling, water, snow, sky radiation)
- Energy storage (daily or seasonal)
- Heat-pumps to increase the temperature of waste heat from datacentres
- Heat re-use and interaction with district heating and cooling systems
- Solar cooling.
Validation of tools with real datacentres: The project will establish a validation process in close collaboration with eight datacentres across Europe to exchange continuous feedback with the technical developers. Based on existing case studies, the validation process will use live datacentres to test the robustness and the end-user applicability of the project’s technical energy concepts and the simulation software tools.

Propose new metrics and contribute to standardisation efforts: RenewIT will contribute to the establishment of a standard approach to datacentre energy evaluation, incorporating infrastructure, equipment and IT workload management and renewables. New ways of evaluating load matching - the relationship between loads, the generation of renewable energy and the grid interaction flexibility – will help operators understand how a particular technical solution can meet the needs of the datacentre and the grid.

The project will also tackle the issue of how to better integrate datacentres with smart cities infrastructure by plugging into smart grid and micro grids, as well as strategies such as redirecting waste heat from datacentres to other businesses and residential accommodation.

RenewIT is made up of both commercial and scientific organisations. It is led by not-for-profit energy research centre Catalonia Institute for Energy Research (IREC). The other members are 451 Research, Barcelona Supercomputing Center (BSC), Loccioni Group of Italy, AIGUASOL, Amsterdam-based datacentre design specialist DEERNS, and Technische Universität Chemnitz, Professorship Technical Thermodynamics. The organisations bring a range of expertise to the project including green IT (IREC), renewable energy systems (AIGUASOL) and energy storage (Technische Universität Chemnitz), datacentre monitoring (Loccioni), workload and application energy management (BSC) and energy efficient datacentre design (DEERNS).

RenewIT is one of six projects funded by the EU under its Framework Programme 7 (FP7) initiative. The other projects are DOLFIN, GENiC, GEYSER, GreenDataNet andDC4Cities. The goal of these projects is to develop research and commercial tools to help increase the proportion of renewable energy generated and used by datacentres.

For further information about the involvement of TU Chemnitz, please contact PD Dr. Thorsten Urbaneck, phone 0371 531-32463, e-mail: thorsten.urbaneck@mb.tu-chemnitz.de.

Katharina Thehos | Technische Universität Chemnitz
Further information:
http://www.tu-chemnitz.de/tu/presse

More articles from Power and Electrical Engineering:

nachricht Researchers develop intelligent handheld robots
27.05.2015 | University of Bristol

nachricht Turn That Defect Upside Down
26.05.2015 | Michigan Technological University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Researchers develop intelligent handheld robots

27.05.2015 | Power and Electrical Engineering

"Hidden" fragrance compound can cause contact allergy

27.05.2015 | Health and Medicine

Supernovas help 'clean' galaxies

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>