Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More than wind in the datacentre

EU launches initiative to increase the use of renewable energy in datacentres - Professorship Technical Thermodynamics of TU Chemnitz is involved in the project `RenewIT´

In October 2013 started the project RenewIT, which is funded for three years by the European Union. It explores how data centres can be designed and operated in compliance with a more efficient use of renewable energy.

In addition to partners from Spain, Italy, Great Britain and the Netherlands also the Professorship Technical Thermodynamics of Technische Universität Chemnitz is involved.

"We are focused on cooling techniques and renewable energy sources. The power supply systems shall be designed and simulated for different locations in Europe," said PD Dr. Thorsten Urbaneck Head of `Thermal Energy Storage´ at the Professorship Technical Thermodynamics.

“Currently, only a minority of European datacentres derive energy from renewable sources. Of those that do, the motivation is usually to gain positive publicity or curry favour with regulators rather than for purely commercial reasons,” said Andrew Donoghue of 451 Research and project spokesperson.

The RenewIT project, co-funded by the EU with a budget of 3.6 million Euros, will develop tools that will help datacentre operators to develop a more compelling business case for using on-site sources of renewable energy – such as solar, wind and biomass - and renewable cooling including outside air cooling and sea water cooling.

“The main roadblocks to using renewable energy to power datacentres are the perceived costs and the lack of tools to help operators make decisions about renewable energy. This project aims to overcome some of these obstacles by designing tools to evaluate the environmental performance and the share of renewable energy sources in the emerging concept of Net Zero Energy datacentres,” added Dr. Jaume Salom of IREC and RenewIT project coordinator.

The main challenges in using renewable energy for datacentre power are cost, capacity, lack of integration and the unreliability of its implementation. For example, existing datacentre infrastructure is geared to a continuous power flow but renewable sources, such as solar and wind, fluctuate depending on the day, time and the season. The RenewIT project plans to develop tools to help match the intermittent flow of energy from onsite renewables with the applications and workloads being executed by the datacentre.

The RenewIT project will focus on five main outcomes:

The RenewIT Tool: This will be a web-based planning tool to help datacentre owners, operators and design organisations understand the economic, energy and sustainability related costs of building a facility that uses a high-proportion of on-site or grid renewable energy.

Workload management and scheduling: RenewIT consortium partner, Barcelona Supercomputing Centre, will lead efforts in this area, developing algorithms for scheduling workloads within a facility, or between facilities using a monitoring and control platform engineered by Loccioni Group.

Develop concepts for integration in datacentres: The team will quantify the benefits of various energy concepts. These concepts will use a holistic approach that integrates various solutions:
- Renewable heat sources (biomass, solar thermal, geothermal)
- Renewable power generation (wind, solar, photovoltaic)
- Renewable cooling (fresh/free air cooling, water, snow, sky radiation)
- Energy storage (daily or seasonal)
- Heat-pumps to increase the temperature of waste heat from datacentres
- Heat re-use and interaction with district heating and cooling systems
- Solar cooling.
Validation of tools with real datacentres: The project will establish a validation process in close collaboration with eight datacentres across Europe to exchange continuous feedback with the technical developers. Based on existing case studies, the validation process will use live datacentres to test the robustness and the end-user applicability of the project’s technical energy concepts and the simulation software tools.

Propose new metrics and contribute to standardisation efforts: RenewIT will contribute to the establishment of a standard approach to datacentre energy evaluation, incorporating infrastructure, equipment and IT workload management and renewables. New ways of evaluating load matching - the relationship between loads, the generation of renewable energy and the grid interaction flexibility – will help operators understand how a particular technical solution can meet the needs of the datacentre and the grid.

The project will also tackle the issue of how to better integrate datacentres with smart cities infrastructure by plugging into smart grid and micro grids, as well as strategies such as redirecting waste heat from datacentres to other businesses and residential accommodation.

RenewIT is made up of both commercial and scientific organisations. It is led by not-for-profit energy research centre Catalonia Institute for Energy Research (IREC). The other members are 451 Research, Barcelona Supercomputing Center (BSC), Loccioni Group of Italy, AIGUASOL, Amsterdam-based datacentre design specialist DEERNS, and Technische Universität Chemnitz, Professorship Technical Thermodynamics. The organisations bring a range of expertise to the project including green IT (IREC), renewable energy systems (AIGUASOL) and energy storage (Technische Universität Chemnitz), datacentre monitoring (Loccioni), workload and application energy management (BSC) and energy efficient datacentre design (DEERNS).

RenewIT is one of six projects funded by the EU under its Framework Programme 7 (FP7) initiative. The other projects are DOLFIN, GENiC, GEYSER, GreenDataNet andDC4Cities. The goal of these projects is to develop research and commercial tools to help increase the proportion of renewable energy generated and used by datacentres.

For further information about the involvement of TU Chemnitz, please contact PD Dr. Thorsten Urbaneck, phone 0371 531-32463, e-mail:

Katharina Thehos | Technische Universität Chemnitz
Further information:

More articles from Power and Electrical Engineering:

nachricht Stanford technology makes metal wires on solar cells nearly invisible to light
26.11.2015 | Stanford University

nachricht Get to the point with electric cars
26.11.2015 | Universität Stuttgart

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>