Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than wind in the datacentre

22.01.2014
EU launches initiative to increase the use of renewable energy in datacentres - Professorship Technical Thermodynamics of TU Chemnitz is involved in the project `RenewIT´

In October 2013 started the project RenewIT, which is funded for three years by the European Union. It explores how data centres can be designed and operated in compliance with a more efficient use of renewable energy.

In addition to partners from Spain, Italy, Great Britain and the Netherlands also the Professorship Technical Thermodynamics of Technische Universität Chemnitz is involved.

"We are focused on cooling techniques and renewable energy sources. The power supply systems shall be designed and simulated for different locations in Europe," said PD Dr. Thorsten Urbaneck Head of `Thermal Energy Storage´ at the Professorship Technical Thermodynamics.

“Currently, only a minority of European datacentres derive energy from renewable sources. Of those that do, the motivation is usually to gain positive publicity or curry favour with regulators rather than for purely commercial reasons,” said Andrew Donoghue of 451 Research and project spokesperson.

The RenewIT project, co-funded by the EU with a budget of 3.6 million Euros, will develop tools that will help datacentre operators to develop a more compelling business case for using on-site sources of renewable energy – such as solar, wind and biomass - and renewable cooling including outside air cooling and sea water cooling.

“The main roadblocks to using renewable energy to power datacentres are the perceived costs and the lack of tools to help operators make decisions about renewable energy. This project aims to overcome some of these obstacles by designing tools to evaluate the environmental performance and the share of renewable energy sources in the emerging concept of Net Zero Energy datacentres,” added Dr. Jaume Salom of IREC and RenewIT project coordinator.

The main challenges in using renewable energy for datacentre power are cost, capacity, lack of integration and the unreliability of its implementation. For example, existing datacentre infrastructure is geared to a continuous power flow but renewable sources, such as solar and wind, fluctuate depending on the day, time and the season. The RenewIT project plans to develop tools to help match the intermittent flow of energy from onsite renewables with the applications and workloads being executed by the datacentre.

The RenewIT project will focus on five main outcomes:

The RenewIT Tool: This will be a web-based planning tool to help datacentre owners, operators and design organisations understand the economic, energy and sustainability related costs of building a facility that uses a high-proportion of on-site or grid renewable energy.

Workload management and scheduling: RenewIT consortium partner, Barcelona Supercomputing Centre, will lead efforts in this area, developing algorithms for scheduling workloads within a facility, or between facilities using a monitoring and control platform engineered by Loccioni Group.

Develop concepts for integration in datacentres: The team will quantify the benefits of various energy concepts. These concepts will use a holistic approach that integrates various solutions:
- Renewable heat sources (biomass, solar thermal, geothermal)
- Renewable power generation (wind, solar, photovoltaic)
- Renewable cooling (fresh/free air cooling, water, snow, sky radiation)
- Energy storage (daily or seasonal)
- Heat-pumps to increase the temperature of waste heat from datacentres
- Heat re-use and interaction with district heating and cooling systems
- Solar cooling.
Validation of tools with real datacentres: The project will establish a validation process in close collaboration with eight datacentres across Europe to exchange continuous feedback with the technical developers. Based on existing case studies, the validation process will use live datacentres to test the robustness and the end-user applicability of the project’s technical energy concepts and the simulation software tools.

Propose new metrics and contribute to standardisation efforts: RenewIT will contribute to the establishment of a standard approach to datacentre energy evaluation, incorporating infrastructure, equipment and IT workload management and renewables. New ways of evaluating load matching - the relationship between loads, the generation of renewable energy and the grid interaction flexibility – will help operators understand how a particular technical solution can meet the needs of the datacentre and the grid.

The project will also tackle the issue of how to better integrate datacentres with smart cities infrastructure by plugging into smart grid and micro grids, as well as strategies such as redirecting waste heat from datacentres to other businesses and residential accommodation.

RenewIT is made up of both commercial and scientific organisations. It is led by not-for-profit energy research centre Catalonia Institute for Energy Research (IREC). The other members are 451 Research, Barcelona Supercomputing Center (BSC), Loccioni Group of Italy, AIGUASOL, Amsterdam-based datacentre design specialist DEERNS, and Technische Universität Chemnitz, Professorship Technical Thermodynamics. The organisations bring a range of expertise to the project including green IT (IREC), renewable energy systems (AIGUASOL) and energy storage (Technische Universität Chemnitz), datacentre monitoring (Loccioni), workload and application energy management (BSC) and energy efficient datacentre design (DEERNS).

RenewIT is one of six projects funded by the EU under its Framework Programme 7 (FP7) initiative. The other projects are DOLFIN, GENiC, GEYSER, GreenDataNet andDC4Cities. The goal of these projects is to develop research and commercial tools to help increase the proportion of renewable energy generated and used by datacentres.

For further information about the involvement of TU Chemnitz, please contact PD Dr. Thorsten Urbaneck, phone 0371 531-32463, e-mail: thorsten.urbaneck@mb.tu-chemnitz.de.

Katharina Thehos | Technische Universität Chemnitz
Further information:
http://www.tu-chemnitz.de/tu/presse

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>