Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Spinoff Raises $25 Million for Ethanol Breakthrough

20.11.2008
SunEthanol, a spinoff company from the University of Massachusetts Amherst, has raised $25 million in Series B financing from a consortium of funders including BP and Soros Fund Management LLC, and is changing its name effective immediately to Qteros. The new name refers to its breakthrough Q Microbe™ technology for producing sustainable liquid fuel from non-food plants and wastes.

Leading the Series B financing is new investor Venrock, along with previous investor Battery Ventures. Also participating in the Series B financing are Soros Fund Management LLC and BP, both new, and Series A investors Long River Ventures and Camros Capital.

Massachusetts Gov. Deval Patrick announced Qteros’ new name and Series B funding in a speech Nov. 18 in Boston at the Fourth Conference on Clean Energy during Clean Energy Week in Massachusetts. Qteros has been singled out as one of the state’s premier clean-tech companies. It will be celebrated on Thursday, Nov. 20 along with other outstanding Massachusetts green companies at the "Green Tie Gala" at Boston’s Museum of Science.

The biofuels startup that began with UMass Amherst microbiology Professor Susan Leschine's discovery in the woods of Massachusetts of an exceptionally efficient microbe for making cellulosic ethanol will now scale up its process from the pilot plant to commercial operations, and hire additional engineers and scientists, company officials said.

Gov. Patrick has been a staunch supporter of the company, describing it as discovering and now commercializing a “transformational breakthrough.” Other state and national leaders have also recognized Qteros this year as one of the most promising emerging clean energy companies, and it has received four U.S. Department of Energy grants and a grant from the National Science Foundation.

“Qteros and the Q Microbe™ will make a major contribution to achieving the two-pronged objective of energy independence and reduced emissions of global warming gases,” said company President and CEO Bill Frey, who spent 28 years at DuPont and led DuPont’s biofuels division before taking the reins of SunEthanol in June. "We are very pleased to be working with some of the best, value-add investors in the world. These partners will allow us to get to market with people who are experts in building very large and valuable companies."

Steve Goldby, the Venrock partner on the investment, commented, “The past century has seen extraordinary innovation in chemistry, and we believe that fundamental biology will hold the secrets of world-class innovation for the next century. Qteros’ microbial approach to the production of cellulosic ethanol has the potential to revolutionize the production of clean energy for the country.”

Congress has mandated production of 36 billion gallons a year of biofuels — 16 billion gallons of which must be advanced cellulosic biofuels such as Qteros is working to produce. That would figure prominently in President-elect Obama's plan to reduce or eliminate America's dependence on foreign fossil fuels by investing $150 billion in clean energy technology over 10 years. Qteros is poised to be a key contributor to realizing that goal.

Leschine, Qteros’ Chief Scientist and co-founder, is the UMass Amherst professor who, nearly 10 years ago, first collected a sample of the Q Microbe™ near the Quabbin Reservoir in Massachusetts. She sees the company's success as the realization of her dream of finding a “super-bug” that can leapfrog the conventional enzyme technologies in terms of cost/benefit, and help solve the world's energy crisis.

“In the past year, we've made great strides in understanding the inner workings of Q, basic knowledge that is enabling the advancement of this technology and from which Qteros is discovering ever-more productive strains of this amazing microbe,” Leschine said.

Led by Sarad Parekh, vice president of R&D, the Qteros lab team has already achieved an over 15-fold increase in productivity with its C3 (Complete Cellulosic Conversion) technology platform for using the Q Microbe™ to convert cellulosic plant material to ethanol.

“Over the last year, the SunEthanol team has demonstrated that the patented Q Microbe™ and the 'C3' process is the industry’s most advanced cellulosic ethanol technology platform,” said Jason Matlof, partner at Battery Ventures. “This infusion of capital and the addition of world-class strategic partners will further enable the team to achieve our goal of commercializing a sustainable and cost-effective cellulosic biofuels platform.”

According to Founder and Executive Vice President Jef Sharp, “This investment in Qteros during difficult financial times is a reminder that new technologies will be the generators of the clean tech future. Qteros’ success will help to ignite the next economic expansion while helping to solve climate change and sustainable energy challenges.”

“Biofuels are the only near-term alternative to gasoline for liquid transportation fuels,” added Frey. “With our company’s new financing from this group of experienced partners, we will be able to realize the full potential of the Q Microbe™ to convert cellulosic feedstocks into ethanol, and to help move America towards energy independence.”

Allison Lenthall | Newswise Science News
Further information:
http://www.qteros.com
http://www.umass.edu/newsoffice

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>