Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Engineers Prove That Carbon Nanotubes Are Superior to Metals for Electronics

24.03.2009
In the quest to pack ever-smaller electronic devices more densely with integrated circuits, nanotechnology researchers keep running up against some unpleasant truths: higher current density induces electromigration and thermomigration, phenomena that damage metal conductors and produce heat, which leads to premature failure of devices.

But University at Buffalo researchers who study electronics packaging recently made a pleasant discovery: that's not the case with Single-Walled Carbon Nanotubes (SWCNTs).

"Years ago, everyone thought that the problem of cooling for electronics could be solved," said Cemal Basaran, Ph.D., professor in the UB Department of Civil, Structural and Environmental Engineering and director of the Electronics Packaging Lab in UB's School of Engineering and Applied Sciences. "Now we know that's not true. Electronics based on metals have hit a wall. We are done with metals."

Single Walled Carbon Nanotubes are extremely thin, hollow cylinders, measuring no thicker than a single atom. Thousands of times stronger than metals, they are expected to one day replace metals in millions of electronic applications.

Basaran and his doctoral student Tarek Ragab have spent the past four years performing quantum mechanics calculations, which prove that in carbon nanotubes, higher current density does not lead to electromigration and thermomigration; it also produces just one percent of the heat produced by traditional metals, such as copper.

Basaran will present the findings in November when he delivers a keynote lecture at the American Society of Mechanical Engineers (ASME) International Mechanical Engineering Congress and Exposition in Orlando.

The findings demonstrate yet another tantalizing property of CNTs, he said.

"It has been assumed that for carbon nanotubes, the electrical heating process would be governed by Joules law, where resistance in a circuit converts electric energy into heat," said Basaran. "We are the first to show mathematically, from a quantum mechanics point of view, that carbon nanotubes do not follow Joules law."

According to Basaran, this essential difference between metals and carbon nanotubes lies in the way they conduct electricity.

"Even though carbon nanotubes are conductive, they do not have metallic bonds," he said. "As a result, they do not conduct electricity the way that traditional metals do."

In conventional metals, he explained, conduction causes a scattering of electrons within the lattice of the material so that, when electrons move during conduction, they bump into atoms. This creates friction and generates heat, the same way a household iron works.

"On the other hand, in carbon nanotubes, electric conduction happens in a very different, one-dimensional 'ballistic' way," he said. "The electrons are fired straight through the material, so that the electrons have very little interference with the atoms."

He drew an analogy, using the difference between a conventional railroad train and a magnetically levitated train.

"In the conventional train, you have friction between the wheels and the track," said Basaran. "Through the generation of heat, that friction causes a loss of energy. But with a magnetically levitated train, the wheels and track are not in direct contact. Without that friction, they can travel much faster."

The minimal amount of friction gives carbon nanotubes a tremendous advantage over conventional metals, said Basaran. The unique properties of carbon nanotubes will allow engineers to realize a host of smaller, faster and more powerful new devices that right now cannot exist because of the limitations of conventional metals.

"When an electric car finally is manufactured, its batteries probably will be based on carbon nanotubes," said Basaran. "You can't use traditional metals in the engines because they run so hot."

Much of Basaran's $1 million-plus funding at UB comes from sources like the U.S. Navy, which is interested in sophisticated electronics systems that could operate under very demanding conditions, such as the electric ship the Navy is building.

Basaran's unique perspective comes from decades of research, which has fundamentally changed what is known about the high current density performance properties of metals and their limitations.

He also sounded a cautionary note, pointing out that current research and development expenditures on carbon nanotubes in the U.S. electronics industry are very small when compared to those of our Asian competitors.

"If the industry continues this way, when carbon nanotube-based electronics become a reality, U.S. electronics manufacturers may be in a position similar to U.S. car manufacturers today, because they have failed to keep up with advances in engineering," he said.

Basaran and his colleagues in the Electronics Packaging Lab actively participate in the UB 2020 strategic strength in Integrated Nanostructured Systems, which brings together physicists and engineers to further enhance and understand nanotechnologies like carbon nanotubes.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>