Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of solar structure cools buildings in full sunlight

28.03.2013
A Stanford team has designed an entirely new form of cooling panel that works even when the sun is shining. Such a panel could vastly improve the daylight cooling of buildings, cars and other structures by radiating sunlight back into the chilly vacuum of space.
Homes and buildings chilled without air conditioners. Car interiors that don't heat up in the summer sun. Tapping the frigid expanses of outer space to cool the planet. Science fiction, you say? Well, maybe not any more.

A team of researchers at Stanford has designed an entirely new form of cooling structure that cools even when the sun is shining. Such a structure could vastly improve the daylight cooling of buildings, cars and other structures by reflecting sunlight back into the chilly vacuum of space. Their paper describing the device was published March 5 in Nano Letters.

“People usually see space as a source of heat from the sun, but away from the sun outer space is really a cold, cold place,” explained Shanhui Fan, professor of electrical engineering and the paper’s senior author. “We’ve developed a new type of structure that reflects the vast majority of sunlight, while at the same time it sends heat into that coldness, which cools manmade structures even in the day time.”
The trick, from an engineering standpoint, is two-fold. First, the reflector has to reflect as much of the sunlight as possible. Poor reflectors absorb too much sunlight, heating up in the process and defeating the purpose of cooling.

The second challenge is that the structure must efficiently radiate heat back into space. Thus, the structure must emit thermal radiation very efficiently within a specific wavelength range in which the atmosphere is nearly transparent. Outside this range, Earth’s atmosphere simply reflects the light back down. Most people are familiar with this phenomenon. It’s better known as the greenhouse effect—the cause of global climate change.

Two goals in one

The new structure accomplishes both goals. It is an effective a broadband mirror for solar light—it reflects most of the sunlight. It also emits thermal radiation very efficiently within the crucial wavelength range needed to escape Earth’s atmosphere.

Radiative cooling at nighttime has been studied extensively as a mitigation strategy for climate change, yet peak demand for cooling occurs in the daytime.

“No one had yet been able to surmount the challenges of daytime radiative cooling—of cooling when the sun is shining,” said Eden Rephaeli, a doctoral candidate in Fan’s lab and a co-first-author of the paper. “It’s a big hurdle.”

The Stanford team has succeeded where others have come up short by turning to nanostructured photonic materials. These materials can be engineered to enhance or suppress light reflection in certain wavelengths.

"We've taken a very different approach compared to previous efforts in this field," said Aaswath Raman, a doctoral candidate in Fan’s lab and a co-first-author of the paper. "We combine the thermal emitter and solar reflector into one device, making it both higher performance and much more robust and practically relevant. In particular, we're very excited because this design makes viable both industrial-scale and off-grid applications."

Using engineered nanophotonic materials the team was able to strongly suppress how much heat-inducing sunlight the panel absorbs, while it radiates heat very efficiently in the key frequency range necessary to escape Earth’s atmosphere. The material is made of quartz and silicon carbide, both very weak absorbers of sunlight.

Net cooling power

The new device is capable of achieving a net cooling power in excess of 100 watts per square meter. By comparison, today’s standard 10-percent-efficient solar panels generate the about the same amount of power. That means Fan’s radiative cooling panels could theoretically be substituted on rooftops where existing solar panels feed electricity to air conditioning systems needed to cool the building.

To put it a different way, a typical one-story, single-family house with just 10 percent of its roof covered by radiative cooling panels could offset 35 percent its entire air conditioning needs during the hottest hours of the summer.

Radiative cooling has another profound advantage over all other cooling strategy such as air-conditioner. It is a passive technology. It requires no energy. It has no moving parts. It is easy to maintain. You put it on the roof or the sides of buildings and it starts working immediately.

A changing vision of cooling

Beyond the commercial implications, Fan and his collaborators foresee a broad potential social impact. Much of the human population on Earth lives in sun-drenched regions huddled around the equator. Electrical demand to drive air conditioners is skyrocketing in these places, presenting an economic and an environmental challenge. These areas tend to be poor and the power necessary to drive cooling usually means fossil-fuel power plants that compound the greenhouse gas problem.

“In addition to these regions, we can foresee applications for radiative cooling in off-the-grid areas of the developing world where air conditioning is not even possible at this time. There are large numbers of people who could benefit from such systems,” Fan said.

Andrew Myers is associate director of communications for the Stanford University School of Engineering.

Andrew Myers | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>