Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny power generator runs on spit

04.04.2014

Saliva-powered micro-sized microbial fuel cells can produce minute amounts of energy sufficient to run on-chip applications, according to an international team of engineers.

Bruce E. Logan, Evan Pugh Professor and Kappe Professor of Environmental Engineering, Penn State, credited the idea to fellow researcher Justine E. Mink. "The idea was Justine's because she was thinking about sensors for such things as glucose monitoring for diabetics and she wondered if a mini microbial fuel cell could be used," Logan said. "There is a lot of organic stuff in saliva."


This is a micro microbial fuel cell with saliva input ports.

Credit: Bruce Logan, Penn State

Microbial fuel cells create energy when bacteria break down organic material producing a charge that is transferred to the anode. Logan, who has studied microbial fuel cells for more than ten years, usually looks to wastewater as a source for both the organic material and the bacteria to create either electricity or hydrogen, but these tiny machines are a bit different.

"By producing nearly 1 microwatt in power, this saliva-powered, micro-sized MFC already generates enough power to be directly used as an energy harvester in microelectronic applications," the researchers report in a recent issue of Nature Publishing Group's Asia Materials.

The researchers believe that the emergence of ultra-low-power chip-level biomedical electronics, devices able to operate at sub-microwatt power outputs, is becoming a reality. One possible application would be a tiny ovulation predictor based on the conductivity of a woman's saliva, which changes five days before ovulation. The device would measure the conductivity of the saliva and then use the saliva for power to send the reading to a nearby cell phone.

Biomedical devices using micro-sized microbial fuel cells would be portable and have their energy source available anywhere. However, saliva does not have the type of bacteria necessary for the fuel cells, and manufacturers would need to inoculate the devices with bacteria from the natural environment.

In the past, the smallest fuel cells have been two-chambered, but this micro version uses a single chamber with a graphene- rather than platinum-coated carbon cloth anode and an air cathode. Air cathodes have not been used before because if oxygen can get to the bacteria, they can breath oxygen and do not produce electricity.

"We have previously avoided using air cathodes in these systems to avoid oxygen contamination with closely spaced electrodes," said Logan. "However, these micro cells operate at micron distances between the electrodes. We don't fully understand why, but bottom line, they worked."

The anode is actually composed of carbon nanomaterial graphene. Other microbial fuel cells used graphene oxide, but the researchers showed that pure multi-layered graphene can serve as a suitable anode material.

While the researchers tested this mini microbial fuel cell using acetate and human saliva, it can use any liquid with sufficient organic material.

###

Justine E. Mink, recent Ph.D. recipient, King Abdullah University of Science and Technology, was first author of this paper. Also working on this project were Muhammad M. Hussain, assistant professor, and Ramy M. Qaisi, graduate student, KAUST.

KAUST supported this work.

A'ndrea Elyse Messer | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht On the crest of the wave: Electronics on a time scale shorter than a cycle of light
30.07.2015 | Universität Regensburg

nachricht Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes
27.07.2015 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>