Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test Plant for Automated Battery Production

09.05.2014

Siemens is using automation technology to support the development of efficient production processes for large-scale batteries.

A research production plant is currently being built at the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Germany. As of 2015, industrial companies working at the center will begin developing close-to-production processes and new materials for lithium-ion batteries.


Their objective is to increase the quality of the batteries and lower the costs. Siemens is equipping the plant with a SCADA (Supervisory Control and Data Acquisition) system to handle production data. Among other benefits, this will help to evaluate production tests quickly.

Lithium-ion batteries are a key technology for the storage of electricity from renewable sources and for the expansion of electromobility. Today, there are only modest production capacities for these batteries in Europe.

In general terms, the production of lithium-ion cells comprises three steps: the production of the electrodes, then the fitting of the cell, followed by the activation, testing, and packaging of the finished cell. Making the electrodes is a complex process all by itself: carbon powder is mixed into a paste for the anode, and the cathode material is made of lithium metal oxides.

The pastes are applied to a metal film, either continuously or in patterns. The coating is only a few tenths of a millimeter thick, and it must be accurate to within one to two thousandths of a millimeter. These films move through the system at up to 50 meters per minute. The finished electrode films are cut, rolled up, and fitted in the casing. After that, the cells are filled with electrolyte and sealed.

Siemens has considerable experience in drive-system and automation technologies for high-precision production processes. Researchers at the global Siemens R&D department Corporate Technology and experts of the Industry Sector have analyzed all the processes used in battery production and put together a portfolio of solutions. It covers everything from drive systems and controls for individual production machines to communications technology and the plant management center. It also includes SCADA systems that supply all production data in real time.

This is particularly useful for a research production line, because the results - such as quality data for various production or material variants - are available right away. Siemens will use its production-planning software Tecnomatix to generate a virtual model of the plant and thus optimize its efficiency even before it is built.

Energy-storage devices are an important next-generation technology for Germany - both for the automotive industry and for the continued expansion of renewable energies. The new plant is directed at precisely these markets. It is expected to produce 300 industrial-standard prismatic lithium cells per day, each with a capacity of more than 20 ampere-hours. Siemens and the ZSW have signed a partnership agreement for the construction of the research production plant.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Acquisition Control Hydrogen Production Sector activation batteries capacity coating electrode electrodes processes produce

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>