Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test Plant for Automated Battery Production

09.05.2014

Siemens is using automation technology to support the development of efficient production processes for large-scale batteries.

A research production plant is currently being built at the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Germany. As of 2015, industrial companies working at the center will begin developing close-to-production processes and new materials for lithium-ion batteries.


Their objective is to increase the quality of the batteries and lower the costs. Siemens is equipping the plant with a SCADA (Supervisory Control and Data Acquisition) system to handle production data. Among other benefits, this will help to evaluate production tests quickly.

Lithium-ion batteries are a key technology for the storage of electricity from renewable sources and for the expansion of electromobility. Today, there are only modest production capacities for these batteries in Europe.

In general terms, the production of lithium-ion cells comprises three steps: the production of the electrodes, then the fitting of the cell, followed by the activation, testing, and packaging of the finished cell. Making the electrodes is a complex process all by itself: carbon powder is mixed into a paste for the anode, and the cathode material is made of lithium metal oxides.

The pastes are applied to a metal film, either continuously or in patterns. The coating is only a few tenths of a millimeter thick, and it must be accurate to within one to two thousandths of a millimeter. These films move through the system at up to 50 meters per minute. The finished electrode films are cut, rolled up, and fitted in the casing. After that, the cells are filled with electrolyte and sealed.

Siemens has considerable experience in drive-system and automation technologies for high-precision production processes. Researchers at the global Siemens R&D department Corporate Technology and experts of the Industry Sector have analyzed all the processes used in battery production and put together a portfolio of solutions. It covers everything from drive systems and controls for individual production machines to communications technology and the plant management center. It also includes SCADA systems that supply all production data in real time.

This is particularly useful for a research production line, because the results - such as quality data for various production or material variants - are available right away. Siemens will use its production-planning software Tecnomatix to generate a virtual model of the plant and thus optimize its efficiency even before it is built.

Energy-storage devices are an important next-generation technology for Germany - both for the automotive industry and for the continued expansion of renewable energies. The new plant is directed at precisely these markets. It is expected to produce 300 industrial-standard prismatic lithium cells per day, each with a capacity of more than 20 ampere-hours. Siemens and the ZSW have signed a partnership agreement for the construction of the research production plant.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Acquisition Control Hydrogen Production Sector activation batteries capacity coating electrode electrodes processes produce

More articles from Power and Electrical Engineering:

nachricht Mission possible: This device will self-destruct when heated
22.05.2015 | University of Illinois at Urbana-Champaign

nachricht Gamma ray camera may help with Fukushima decontamination*
21.05.2015 | Waseda University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

What Holds Chromosomes Together - Max Planck Scientists Elucidate Operating Mode of DNA-Packaging

26.05.2015 | Life Sciences

Engineering phase changes in nanoparticle arrays

26.05.2015 | Materials Sciences

Study suggests new way of preventing diabetes-associated blindness

26.05.2015 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>