Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No-sweat pressure sensors

13.01.2010
Microelectronic chips used to take pressure readings are very delicate. A new technology has been developed that makes pressure sensors more robust, enabling them to continue operating normally at temperatures up to 250 degrees Celsius.

The drill bit gradually burrows deeper into the earth, working its way through the rock. Meanwhile, dozens of sensors are busily engaged in tasks such as taking pressure readings and evaluating porosity. The conditions they face are extreme, with the sensors being required to withstand high temperatures and pressures as well as shocks and vibrations. The sensors send the data to the surface to help geologists with work such as searching for oil deposits.

Yet there is one major hurdle: on average, the pressure sensors can only withstand temperatures of between 80 and 125 degrees Celsius – but at great depths the temperature is often significantly higher. The Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg has come to the rescue, its researchers having developed a pressure sensor system that continues to function normally even at 250 degrees Celsius. »The pressure sensors consist of two components that are located on a microelectronic chip or wafer,« explains Dr. Hoc Khiem Trieu, department head at IMS. »The first component is the sensor itself, and the other component is the EEPROM.« This is the element that stores all the readings together with the data required for calibration. To enable the pressure sensor to function properly even at extremely high temperatures, the developers modified the wafer. While normal wafers tend to be made of monocrystalline silicon, the researchers chose silicon oxide for this application. »The additional oxide layer provides better electrical insulation,« Trieu continues. »It prevents the leakage current that typically occurs at very high temperatures, which is the principal reason that conventional sensors fail when they reach a certain temperature.« The oxide layer enabled the researchers to improve the insulation of the memory component by three to four orders of magnitude. In theory, this should enable the pressure sensors to withstand temperatures of up to 350 degrees Celsius – the researchers have provided practical proof of stability up to 250 degrees and are planning to conduct further studies at higher temperatures. In addition, the researchers are analyzing the prototypes of the pressure sensors in endurance tests.

There is a broad range of potential applications, with engineers hoping to use the high-temperature pressure sensors not only in the petrochemical environment, but also in automobile engines and geothermal applications.

Dr. Hoc Khiem Trieu | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/en/press/research-news/2010/january/heat-resistent-pressure-sensors.jsp

More articles from Power and Electrical Engineering:

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

nachricht Magic off the cuff
11.07.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>