Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone battery life could dramatically improve with new invention

16.09.2011
A new "subconscious mode" for smartphones and other WiFi-enabled mobile devices could extend battery life by as much as 54 percent for users on the busiest networks.

University of Michigan computer science and engineering professor Kang Shin and doctoral student Xinyu Zhang will present their new power management approach Sept. 21 at the ACM International Conference on Mobile Computing and Networking in Las Vegas. The approach is still in the proof-of-concept stage and is not yet commercially available.

Even when smartphones are in power-saving modes and not actively sending or receiving messages, they are still on alert for incoming information and they're searching for a clear communication channel. The researchers have found that this kind of energy-taxing "idle listening" is occurring during a large portion of the time phones spend in power-saving mode—as much as 80 percent on busy networks. Their new approach could make smartphones perform this idle listening more efficiently. It's called E-MiLi, which stands for Energy-Minimizing Idle Listening.

To find out how much time phones spend keeping one ear open, Shin and Zhang conducted an extensive trace-based analysis of real WiFi networks. They discovered that, depending on the amount of traffic in the network, devices in power-saving modes spend 60 to 80 percent of their time in idle listening. In previous work, they demonstrated that phones in idle listening mode expend roughly the same amount of power as they do when they're fully awake.

"My phone isn't sending or receiving anything right now," Shin said, lifting his power-skinned iPhone, "but it's listening to see if data is coming in so I can receive it right away. This idle listening often consumes as much power as actively sending and receiving messages all day."

Here's how E-MiLi works: It slows down the WiFi card's clock by up to 1/16 its normal frequency, but jolts it back to full speed when the phone notices information coming in. It's well known that you can slow a device's clock to save energy. The hard part, Shin said, was getting the phone to recognize an incoming message while it was in this slower mode.

"We came up with a clever idea," Shin said. "Usually, messages come with a header, and we thought the phone could be enabled to detect this, as you can recognize that someone is calling your name even if you're 90 percent asleep."

When used with power-saving mode, the researchers found that E-MiLi is capable of reducing energy consumption by around 44 percent for 92 percent of mobile devices in real-world wireless networks.

In addition to new processor-slowing software on smartphones, E-MiLi requires new firmware for phones and computers that would be sending messages. They need the ability to encode the message header—the recipient's address—in a new and detectable way. The researchers have created such firmware, but in order for E-MiLi use to become widespread, WiFi chipset manufacturers would have to adopt these firmware modifications and then companies that make smartphones and computers would have to incorporate the new chips into their products.

Shin points out that E-MiLi is compatible with today's models, so messages sent with future devices that use E-MiLi's encoding would still be received as usual on smartphones without E-MiLi. E-MiLi can also be used with other wireless communication protocols that require idle listening, such as ZigBee.

Shin is the Kevin and Nancy O'Connor Professor of Computer Science. This research was funded by the National Science Foundation. The paper is titled "E-MiLi: Energy-Minimizing Idle Listening in Wireless Networks." The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>