Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone battery life could dramatically improve with new invention

16.09.2011
A new "subconscious mode" for smartphones and other WiFi-enabled mobile devices could extend battery life by as much as 54 percent for users on the busiest networks.

University of Michigan computer science and engineering professor Kang Shin and doctoral student Xinyu Zhang will present their new power management approach Sept. 21 at the ACM International Conference on Mobile Computing and Networking in Las Vegas. The approach is still in the proof-of-concept stage and is not yet commercially available.

Even when smartphones are in power-saving modes and not actively sending or receiving messages, they are still on alert for incoming information and they're searching for a clear communication channel. The researchers have found that this kind of energy-taxing "idle listening" is occurring during a large portion of the time phones spend in power-saving mode—as much as 80 percent on busy networks. Their new approach could make smartphones perform this idle listening more efficiently. It's called E-MiLi, which stands for Energy-Minimizing Idle Listening.

To find out how much time phones spend keeping one ear open, Shin and Zhang conducted an extensive trace-based analysis of real WiFi networks. They discovered that, depending on the amount of traffic in the network, devices in power-saving modes spend 60 to 80 percent of their time in idle listening. In previous work, they demonstrated that phones in idle listening mode expend roughly the same amount of power as they do when they're fully awake.

"My phone isn't sending or receiving anything right now," Shin said, lifting his power-skinned iPhone, "but it's listening to see if data is coming in so I can receive it right away. This idle listening often consumes as much power as actively sending and receiving messages all day."

Here's how E-MiLi works: It slows down the WiFi card's clock by up to 1/16 its normal frequency, but jolts it back to full speed when the phone notices information coming in. It's well known that you can slow a device's clock to save energy. The hard part, Shin said, was getting the phone to recognize an incoming message while it was in this slower mode.

"We came up with a clever idea," Shin said. "Usually, messages come with a header, and we thought the phone could be enabled to detect this, as you can recognize that someone is calling your name even if you're 90 percent asleep."

When used with power-saving mode, the researchers found that E-MiLi is capable of reducing energy consumption by around 44 percent for 92 percent of mobile devices in real-world wireless networks.

In addition to new processor-slowing software on smartphones, E-MiLi requires new firmware for phones and computers that would be sending messages. They need the ability to encode the message header—the recipient's address—in a new and detectable way. The researchers have created such firmware, but in order for E-MiLi use to become widespread, WiFi chipset manufacturers would have to adopt these firmware modifications and then companies that make smartphones and computers would have to incorporate the new chips into their products.

Shin points out that E-MiLi is compatible with today's models, so messages sent with future devices that use E-MiLi's encoding would still be received as usual on smartphones without E-MiLi. E-MiLi can also be used with other wireless communication protocols that require idle listening, such as ZigBee.

Shin is the Kevin and Nancy O'Connor Professor of Computer Science. This research was funded by the National Science Foundation. The paper is titled "E-MiLi: Energy-Minimizing Idle Listening in Wireless Networks." The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>