Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens is trendsetter with process bus for protection devices in power transmission grids

25.08.2014

Siemens Smart Grid Division is stepping up the development of process bus technology in the high voltage power transmission grid with a new process bus input card for their Siprotec 5 series of protection devices and a newly developed input/output unit (merging unit).

The process bus has advantages especially in the high-voltage area where protection devices are normally installed at some distance from the instrument transformers. The merging units can be mounted near the instrument transformers and can be connected to the protection devices via fiber-optic Ethernet connections instead of via copper cable as at present. This not only reduces cabling and maintenance costs but cuts costs for installation and for the actual cable. The process bus technology also increases the flexibility of the protection system.

Without the process bus, the protection devices are connected to the instrument transformers directly with copper cables. Since this has to be done for every single signal, it increases the amount of wiring necessary in the switching station. This can be reduced by using process bus technology. With classic protection devices the process data is measured directly in the protection device via a special input card. This analog input card consists of an input circuit, an analog-digital converter and a bus connection to the CPU. All these connection terminals are located inside the device and are manufacturer-specific.

With Siemens process bus technology, the input card is separated from the CPU of the protection device and the range of the bus is extended from a few centimeters to as much as two kilometers. This separation creates two devices. The existing analog input card and the bus connection form the merging unit which can now be installed close to the instrument transformer and thanks to the process bus well away from the protection device. The protection device has been fitted with a process bus input, and the former input card is no longer used. The communications interface between merging unit and protection device has been standardized in IEC 61850-9-2 in order to create the necessary interoperability.

... more about:
»Ethernet »Grid »Grids »Smart »connection »copper »technologies

Process bus technology allows the merging unit to be installed close to the instrument transformer, which reduces the length of the copper connecting cable between the transformer and merging unit. The merging unit is equipped on the output side with fiber-optic Ethernet ports and the connection between merging unit and protection device is provided by fiber-optic cables. Instead of wiring the analog transformer inputs to the protection device as in the past, with the process bus the merging unit is connected close to the transformer, and the collected data distributed from there via Ethernet.

The process bus also increases the flexibility of the protection system. Using Ethernet as the communication channel, telegrams from more than just one protection device can be received and processed by the same merging unit without the need for additional cabling. This additionally reduces the cabling work necessary in the entire system. Expansion of the system is also possible without great cost and effort. An additional protection device can be installed in the switching station by inserting a cable to the Ethernet communications interface. Since the added protection device is usually at the same location as the other devices, the process bus infrastructure is already in place there. This means that the only cabling required for the new device is for connecting it to the system.

Automation of switchgear in accordance with IEC 61850-8-1 is state of the art today. The binary data that used to be transmitted between protection devices via directly wired, discrete binary inputs and outputs is now replaced by Goose messages (Generic object oriented substation events). This technology already reduces the number of copper cables and is widely used. The success of Goose messages in replacing copper cables has shown how successfully Ethernet technologies can improve the effectiveness and reliability of energy automation systems. The reduction of copper cables, and higher system reliability and security at substations will also help pave the way for the process bus.

Energy-efficient, eco-friendly solutions for setting up intelligent power supply networks (Smart Grids) and the associated service are part of Siemens' Environmental Portfolio. Around 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

The Siemens Infrastructure & Cities Sector (Munich, Germany), with approximately 90,000 employees, focuses on sustainable and intelligent infrastructure technologies. Its offering includes products, systems and solutions for intelligent traffic management, rail-bound transportation, smart grids, power distribution, energy efficient buildings, and safety and security. The Sector comprises the divisions Building Technologies, Low and Medium Voltage, Mobility and Logistics, Rail Systems and Smart Grid. For more information please visit http://www.siemens.com/infrastructure-cities

The Siemens Smart Grid Division (Nuremberg, Germany) offers power providers, network operators, industrial enterprises and cities an end-to-end portfolio with products and solutions to develop intelligent energy networks. Smart Grids enable a bidirectional flow of energy and information. They are required for the integration of more renewable energy sources in the network. In addition, power providers can run their plants more efficiently with data gained from Smart Grids. Software solutions that analyze data from Smart Grids will continuously gain importance. Thereby, the division uses in-house developments in addition to systems from software partners. For further information please see: http://www.siemens.com/smartgrid

Reference Number: ICSG201408051e

Contact

Mr. Dietrich Biester
Smart Grid Division

Siemens AG

Gugelstr. 65

90459   Nuremberg

Germany

Tel: +49 (911) 433-2653

Dietrich Biester | Siemens Infrastructure & Cities

Further reports about: Ethernet Grid Grids Smart connection copper technologies

More articles from Power and Electrical Engineering:

nachricht Flexible OLED applications arrive
28.06.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Energy from Sunlight: Further Steps towards Artificial Photosynthesis
24.06.2016 | Universität Basel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>