Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots big and small showcase their skills at NIST Alaskan events

01.06.2010
Make room, Bender, Rosie and R2D2! Your newest mechanical colleagues are a few steps closer to reality, thanks to lessons learned during two robotics events hosted by the National Institute of Standards and Technology (NIST) at the recent IEEE International Conference on Robotics and Automation (ICRA) in Anchorage, Alaska.

The events—the Virtual Manufacturing Automation Competition (VMAC) and the Mobile Microrobotics Challenge (MMC)—were designed to prove the viability of advanced technologies for robotic automation of manufacturing and microrobotics.

In the first of two VMAC matches, contestants used off-the-shelf computer gaming engines to run simulations of a robot picking up boxes of various sizes and weights from a conveyor belt and arranging them on a pallet for shipping. The two teams in the competition—both from Georgia Tech University—showed that their systems were capable of solving mixed palletizing challenges. To do this, the system had to receive a previously unseen order list, create a logical plan for stacking and arranging boxes on a pallet to fulfill that order, and then computer simulate the process to show that the plan worked. Getting all of the boxes onto the pallet is relatively straightforward; however, creating a stable, dense pallet is a difficult challenge for a robot.

The second manufacturing contest "road tested" a robot's mobility in a one-third scale factory environment. The lone participating team, the University of Zagreb (Croatia), demonstrated that it could successfully deliver packages simultaneously to different locations in the mock factory by controlling three robotic Automated Guided Vehicles (AGVs) at once.

In the microrobotics match-up, six teams from Canada, Europe and the United States pitted their miniature mechanisms—whose dimensions are measured in micrometers (millionths of a meter)—against each other in three tests: a two-millimeter dash in which microbots sprinted across a distance equal to the diameter of a pin head; a microassembly task inserting pegs into designated holes; and a freestyle competition showcasing a robot's ability to perform a specialized activity emphasizing one or more of the following: system reliability, level of autonomy, power management and task complexity.

In the two-millimeter dash, the microbot from Carnegie Mellon University broke the world record held by Switzerland's ETH Zurich (the event also was part of earlier NIST-hosted "nanosoccer" competitions) with an average time of 78 milliseconds. However, the achievement was short-lived. Less than an hour later, the French team (representing two French research agencies: the FEMTO-ST Institute and the Institut des Systèmes Intelligents et de Robotique, or ISIR) shattered the mark with an average time of 32 milliseconds.

ETH Zurich was the champion in the microassembly event with a perfect 12 for 12 score steering pegs approximately 500 micrometers long (about the size of a dust particle) into holes at the edge of a microchip. Runner-up was Carnegie Mellon whose microbot successfully placed 4 of 9 pegs.

ETH Zurich's robot also captured the freestyle event, amazing spectators with its unprecedented ability to maneuver in three dimensions within a water medium. In fact, in one demonstration, the Swiss device "flew" over the edge of the microassembly field, reversed direction and pushed out the pegs it had inserted earlier. Taking second place in the freestyle event was the team from Carnegie Mellon that demonstrated how three microbots could be combined into a single system and then disassembled again into separate units. Third place in the event went to the microbot from the Stevens Institute of Technology.

NIST conducted the VMAC in cooperation with IEEE and Georgia Tech, and collaborated on the MMC with the IEEE Robotics and Automation Society. More events of this kind with evolving challenges are planned for the future, as robotics technologies mature. NIST will work with university and industry partners on these events with the goal of advancing skills that future robots—both full-size and micro-size—will need to carry out their functions.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Alaskan Automation ETH Zurich IEEE Mellon Robotic VMAC information technology

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>