Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots big and small showcase their skills at NIST Alaskan events

01.06.2010
Make room, Bender, Rosie and R2D2! Your newest mechanical colleagues are a few steps closer to reality, thanks to lessons learned during two robotics events hosted by the National Institute of Standards and Technology (NIST) at the recent IEEE International Conference on Robotics and Automation (ICRA) in Anchorage, Alaska.

The events—the Virtual Manufacturing Automation Competition (VMAC) and the Mobile Microrobotics Challenge (MMC)—were designed to prove the viability of advanced technologies for robotic automation of manufacturing and microrobotics.

In the first of two VMAC matches, contestants used off-the-shelf computer gaming engines to run simulations of a robot picking up boxes of various sizes and weights from a conveyor belt and arranging them on a pallet for shipping. The two teams in the competition—both from Georgia Tech University—showed that their systems were capable of solving mixed palletizing challenges. To do this, the system had to receive a previously unseen order list, create a logical plan for stacking and arranging boxes on a pallet to fulfill that order, and then computer simulate the process to show that the plan worked. Getting all of the boxes onto the pallet is relatively straightforward; however, creating a stable, dense pallet is a difficult challenge for a robot.

The second manufacturing contest "road tested" a robot's mobility in a one-third scale factory environment. The lone participating team, the University of Zagreb (Croatia), demonstrated that it could successfully deliver packages simultaneously to different locations in the mock factory by controlling three robotic Automated Guided Vehicles (AGVs) at once.

In the microrobotics match-up, six teams from Canada, Europe and the United States pitted their miniature mechanisms—whose dimensions are measured in micrometers (millionths of a meter)—against each other in three tests: a two-millimeter dash in which microbots sprinted across a distance equal to the diameter of a pin head; a microassembly task inserting pegs into designated holes; and a freestyle competition showcasing a robot's ability to perform a specialized activity emphasizing one or more of the following: system reliability, level of autonomy, power management and task complexity.

In the two-millimeter dash, the microbot from Carnegie Mellon University broke the world record held by Switzerland's ETH Zurich (the event also was part of earlier NIST-hosted "nanosoccer" competitions) with an average time of 78 milliseconds. However, the achievement was short-lived. Less than an hour later, the French team (representing two French research agencies: the FEMTO-ST Institute and the Institut des Systèmes Intelligents et de Robotique, or ISIR) shattered the mark with an average time of 32 milliseconds.

ETH Zurich was the champion in the microassembly event with a perfect 12 for 12 score steering pegs approximately 500 micrometers long (about the size of a dust particle) into holes at the edge of a microchip. Runner-up was Carnegie Mellon whose microbot successfully placed 4 of 9 pegs.

ETH Zurich's robot also captured the freestyle event, amazing spectators with its unprecedented ability to maneuver in three dimensions within a water medium. In fact, in one demonstration, the Swiss device "flew" over the edge of the microassembly field, reversed direction and pushed out the pegs it had inserted earlier. Taking second place in the freestyle event was the team from Carnegie Mellon that demonstrated how three microbots could be combined into a single system and then disassembled again into separate units. Third place in the event went to the microbot from the Stevens Institute of Technology.

NIST conducted the VMAC in cooperation with IEEE and Georgia Tech, and collaborated on the MMC with the IEEE Robotics and Automation Society. More events of this kind with evolving challenges are planned for the future, as robotics technologies mature. NIST will work with university and industry partners on these events with the goal of advancing skills that future robots—both full-size and micro-size—will need to carry out their functions.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Alaskan Automation ETH Zurich IEEE Mellon Robotic VMAC information technology

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>