Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers work to make wood a new energy source

13.03.2009
Is wood the new coal? Researchers at North Carolina State University think so, and they are part of a team working to turn woodchips into a substitute for coal by using a process called torrefaction that is greener, cleaner and more efficient than traditional coal burning.

Environmental organizations have raised concerns for decades about the environmental impact of the burning of fossil fuels – particularly coal – for energy. The combustion of coal contributes to acid rain and air pollution, and has been connected with global warming.

During torrefaction, woodchips go through a machine – almost like an industrial-sized oven – to remove the moisture and toast the biomass. The machine, called a torrefier, changes more than just the appearance of the woody biomass. The chips become physically and chemically altered – through heat in a low-oxygen environment – to make them drier and easier to crush.

The torrefied wood is lighter than the original woodchips but retains 80 percent of the original energy content in one-third the weight. That makes them an ideal feedstock for electric power plants that traditionally use coal to generate energy for businesses and residential neighborhoods.

While the process of torrefaction is nothing new, NC State's particular torrefier machine, called the Autothermic Transportable Torrefaction Machine (ATTM), is field portable and self-heated. Traditional torrefier machines are bulky and immobile, but the ATTM lends itself to field-based operations, which reduces the cost of transporting tons of woody biomass to and from the combustion facilities. The ATTM is also largely self-powered, producing a large energy return while also removing carbon from the atmosphere.

"This process could help us build a bridge to more energy independence," says Chris Hopkins, a doctoral student in forestry at NC State and developer of the torrefier machine.

Woodchips are abundant in North Carolina while coal is all imported from other states. More importantly, woodchips are a carbon neutral source of energy. For a state that spends more than $4 billion a year importing coal, use of torrefied wood could result in an economic windfall.

Hopkins explains that nearly half of the state's forests are not adequately thinned because landowners lack a market for small diameter trees, rotten or unusable trees and logging residue. That land could be producing more valuable wood products if it was managed more effectively, he says.

If woodchips were collected and sold to help fire North Carolina's energy generating plants, the state's tax base could be increased by nearly $400 million a year, Hopkins estimates. Since the torrefier machine is small enough to transport, it could be set up close to forest-clearing operations, making the process even more efficient.

NC State's Office of Technology Transfer (OTT) announced an exclusive license agreement with AgriTech Producers, LLC of Columbia, S.C. to commercialize this technology, called "Carolina Coal." Billy B. Houghteling, director of OTT, says, "This partnership is an example of how NC State contributes to the strengthening of our state and national economy. By partnering with organizations like AgriTech, the university's scientific discoveries move beyond the Belltower and into the marketplace where they can really make a difference."

Caroline Barnhill | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>