Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at HKUST achieved novel nanobowl optical concentrator for organic solar cell

07.01.2015

Geometrical light trapping is a simple and promising strategy to largely improve the optical absorption and efficiency of solar cells. Nonetheless, implementation of geometrical light trapping in organic photovoltaic (OPV) is challenging due to the fact that uniform organic active layer can rarely be achieved on textured substrate.

Professor Zhiyong Fan and his group from Hong Kong University of Science and Technology (HKUST) reported novel nanobowl optical concentrator fabricated on low-cost aluminum foil and aiming at tackling this problem. They have successfully fabricated OPV devices based on such optical concentrator and demonstrated over 28 % enhancement in power conversion efficiency over the devices without nanobowl. This work was published in SCIENCE BULLETIN. 2015 Vol. 1.


This is an electron microscopic image and optical simulation of nanobowl optical concentrator.

Credit: ©Science China Press

Solar energy is one of the most promising renewable energy resources and represents a clean and ultimate replacement for fossil fuels in the future. Over the past decades, enormous efforts have been invested in developing efficient and cost effective photovoltaic devices which are competitive to the fossil fuel. Organic photovoltaic (OPV) has been regarded as one of the promising candidates for large-scale, low-cost and efficient solar energy harvesting. Typical OPV devices are fabricated on glass substrate and using indium-doped tin oxide as electrode.

However, such substrate is not flexible and the relatively high resistance of ITO electrode will compromises the OPV device performance. Comparatively, an aluminum foil substrate has the advantages of excellent conductivity, flexibility, cost-effectiveness and roll-to-roll processibility. Meanwhile, light trapping by nano-textured substrate is an appealing strategy to improve solar cell efficiency. Nonetheless, such application for OPV has yet been successfully demonstrated up to now. This is partly due to the more stringent requirement on active layer thickness uniformity for OPV devices and such uniformity is hard to be guaranteed on nano-texture with the existing coating techniques.

The novel nanobowl optical concentrator developed by Professor Zhiyong Fan can largely enhance the optical absorption in the active layer of organic solar cell and optical simulation revealed that such improvement was contributed by the superior photon capturing capability of the nanobowl. In addition, they have investigated the effect of geometry of nanobowl on the solar cell performance and three types of nanobowl with pitch of 1000 nm, 1200 nm and 1500 nm were studied.

Solar cells based on nanobowl with pitch of 1000 nm exhibited the best photon absorption in photoactive layer leading to the highest short-circuit current density of ~9.41 mA cm-2 among all nanobowl substrates. With open-circuit voltage of 0.573 V and fill factor of 57.9 %, this nanobowl solar cell achieved a solar energy conversion efficiency of 3.12 %, which is 28 % improvement over the control device without nanobowl. This work not only revealed the in-depth understanding of light trapping by nanobowl optical concentrator, but also demonstrated the feasibility of implementing geometrical light trapping in low-cost, solution processible OPV.

The development of the novel nanobowl optical concentrator and its application on OPV were a collaborative effort involving Professors in Department of Chemistry of HKUST including Professor Shihe Yang and Professor He (Henry) Yan, who are working on cutting-edge researches about organic photovoltaics. The research project was supported by General Research Funds from Hong Kong Research Grants Council and Hong Kong Innovation Technology Commission.

See the article: Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics. Science Bulletin. DOI:10.1007/s11434-014-0693-8

http://www.scibull.com:8080/EN/abstract/abstract509578.shtml http://link.springer.com/article/10.1007%2Fs11434-014-0693-8

Zhiyong Fan | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>