Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT's 'electronic nose' could detect explosives, other hazards

29.10.2007
A tiny "electronic nose" that MIT researchers have engineered with a novel inkjet printing method could be used to detect hazards including carbon monoxide, harmful industrial solvents and explosives.

Led by MIT professor Harry Tuller, the researchers have devised a way to print thin sensor films onto a microchip, a process that could eventually allow for mass production of highly sensitive gas detectors.

"Mass production would be an enormous breakthrough for this kind of gas sensing technology," said Tuller, a professor in the Department of Materials Science and Engineering (MSE), who is presenting the research at the Composites at Lake Louise Conference in Alberta, Canada, on Oct. 30.

The prototype sensor, created by Tuller, postdoctoral fellow Kathy Sahner and graduate student Woo Chul Jung, members of MIT's Electroceramics Group in MSE, consists of thn layers of hollow spheres made of the ceramic material barium carbonate, which can detect a range of gases. Using a specialized inkjet print head, tiny droplets of barium carbonate or other gas-sensitive materials can be rapidly deposited onto a surface, in any pattern the researchers design.

The miniature, low-cost detector could be used in a variety of settings, from an industrial workplace to an air-conditioning system to a car's exhaust system, according to Tuller. "There are many reasons why it's important to monitor our chemical environment," he said.

For a sensor to be useful, it must be able to distinguish between gases. For example, a sensor at an airport would need to know the difference between a toxic chemical and perfume, Tuller said. To achieve this, sensors should have an array of films that each respond differently to different gases. This is similar to the way the human sense of smell works, Tuller explained.

"The way we distinguish between coffee's and fish's odor is not that we have one sensor designed to detect coffee and one designed to detect fish, but our nose contains arrays of sensors sensitive to various chemicals. Over time, we train ourselves to know that a certain distribution of vapors corresponds to coffee," he said.

In previous work, designed to detect nitrogen oxide (NOx) emissions from diesel exhaust, the researchers created sensors consisting of flat, thin layers of barium carbonate deposited on quartz chips.

However, the films were not sensitive enough, and the team decided they needed more porous films with a larger surface area.

To create more texture, they applied the barium carbonate to a layer of microspheres, hollow balls less than a micrometer in diameter made of a plastic polymer. When the microspheres are burned away, a textured, highly porous layer of gas-sensitive film is left behind.

The resulting film, tens of nanometers (billionths of a meter) thick, is much more sensitive than flat films because it allows the gas to readily permeate through the film and interact with a much larger active surface area.

At first, the researchers used a pipette to deposit the barium carbonate and microspheres. However, this process proved time-consuming and difficult to control.

To improve production efficiency, the researchers took advantage of a programmable Hewlett Packard inkjet print head located in the MIT Laboratory of Organic Optics and Electronics. The inkjet print head, like that in a regular inkjet printer, can deposit "ink" very quickly and controllably. The special gas sensitive inks used in this work were optimized for "printing" by Amy Leung, an MIT sophomore in chemical engineering.

This allows the researchers to rapidly produce many small, identical chips containing geometrically well-defined gas-sensing films with micrometer dimensions. Patterns, of different gas sensitive inks, just as in a color printer, can be easily generated to form arrays with very little "ink" required per sensor.

In future studies, the team hopes to create large arrays of gas sensitive films with controlled three-dimensional shapes and morphologies.

The research is funded by the National Science Foundation.

Patti Richards | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>