Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered eggshells to help make hydrogen fuel

28.09.2007
Engineers at Ohio State University have found a way to turn discarded chicken eggshells into an alternative energy resource.

The patented process uses eggshells to soak up carbon dioxide from a reaction that produces hydrogen fuel. It also includes a unique method for peeling the collagen-containing membrane from the inside of the shells, so that the collagen can be used commercially.

L.S. Fan, Distinguished University Professor of chemical and biomolecular engineering at Ohio State, said that he and former Ohio State doctoral student, Mahesh Iyer, hit upon the idea when they were trying to improve a method of hydrogen production called the water-gas-shift reaction. With this method, fossil fuels such as coal are gasified to produce carbon monoxide gas, which then combines with water to produce carbon dioxide and hydrogen.

The eggshell plays a critical role.

"The key to making pure hydrogen is separating out the carbon dioxide," Fan said. "In order to do it very economically, we needed a new way of thinking, a new process scheme."

That brought them to eggshells, which mostly consist of calcium carbonate -- one of nature's most absorbent materials. It is a common ingredient in calcium supplements and antacids. With heat processing, calcium carbonate becomes calcium oxide, which will then absorb any acidic gas, such as carbon dioxide.

In the laboratory, Fan and his colleagues demonstrated that ground-up eggshells could be used in the water-gas-shift reaction. Iyer performed those early experiments; recent graduate Theresa Vonder Haar also worked on the project for her bachelor's degree honors thesis.

Calcium carbonate –- a key ingredient in the eggshells -- captures 78 percent of carbon dioxide by weight, Fan explained. That means, given equal amounts of carbon dioxide and eggshell, the eggshell would absorb 78 percent of the carbon dioxide.

That makes it the most effective carbon dioxide absorber ever tested.

Energy experts believe that hydrogen may become an important power source in the future, most notably in the form of fuel cells. But first, researchers must develop affordable ways to produce large quantities of hydrogen -- and that means finding ways to deal with the byproducts of chemical reactions that produce the gas.

According to the United States Department of Agriculture, the country produced nearly 91 billion eggs in 2006. That equates to about 455,000 tons of shell per year that could potentially be used in hydrogen production.

Still, Fan said, even if all that shell were utilized, it would only provide a portion of what the United States would need to seriously pursue a hydrogen economy.

"Eggshell alone may not be adequate to produce hydrogen for the whole country, but at least we can use eggshell in a better way compared to dumping it as organic waste in landfills, where companies have to pay up to $40 dollars per ton disposal cost," he said.

Before they could grind up the egg shell, the engineers needed to remove the collagen-containing membrane that clings to the inside; they developed an organic acid that does the job. About 10 percent of the membrane consists of collagen, which sells for about $ 1000/gram. This collagen, once extracted, can be used in food or pharmaceuticals, or for medical treatments. Doctors use collagen to help burn victims regenerate skin; it's also used in cosmetic surgery.

"We like that our technology can help the egg industry to dispose of its waste, and at the same time convert the waste to a useful product," Fan said.

"And in the long term, we're demonstrating that carbon-based fuel sources, like coal or biomass, can be efficiently converted to hydrogen and liquid fuel. The goal is an energy conversion system that uses a dependable fossil energy source, but at the same time has very little environmental impact."

Fan is currently working with a major egg company to produce large quantities of the eggshell granules for testing. The university plans to license the technology for further development.

L.S. Fan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>