Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Heaters from Heraeus Noblelight Save Space and Time in Powder Coating

14.06.2007
• Electrical Infrared Emitters Melt and Cure Powder Coatings Quickly
• Infrared Systems Help To Save Time And Space
• Case Study From China: Coating Of Guide Blades

Metals, plastics and wood – many materials today are powder-coated. Paints and lacquers are applied as powders, melted by the introduction of heat and finally cured. Electrical infrared emitters transfer large amounts of energy in a short time without the need for a contact medium. As a result, the oven length can be reduced or the production rate speeded up compared with conventional methods. Moreover, rapid melting of the powder helps to improve the surface quality of the coating. The example of a manufacturer of metal parts for technical consumer products shows how companies in China utilize the advantages of infrared technology.


Powder coating on flat metal parts is cured quicker and on less floorspace than with a gas-fired oven. Copyright Heraeus Noblelight 2007

Saving space was a key argument when a manufacturer of metal plates for technical consumer products in China compared gas-fired and electrical infrared technology for its new plant in Fujian province. As the market for these powder-coated products is very competitive and downward cost pressure is huge, the floorspace has to be used in the best possible way. After testing electrical infrared emitters in the Heraeus test center in Shanghai, the company was impressed by the speed of curing which made a much more compact design of the line possible. Compared to a convection oven, the line speed could be increased by more than 50%. The coating line contains two infrared sections: drying of the uncoated parts before coating and curing the powder at approx. 200OC after coating. Both process steps use medium-wave infrared modules which were built and equipped with emitters by Heraeus Noblelight. They can be controlled in different zones to save power when smaller parts are running through the curing oven. The power of the infrared heaters can also be easily adjusted to the different colors of coating, dark coating requiring less energy than light coating.

Further benefits of infrared technology became obvious when the line started operation. The quality of the coated products improved further because the powder is cured faster, without time to flow down the plates. “We have not had a single complaint since the new line started operation” says the Engineering and Maintenance Manger of the company. The company was further able to take advantage of lower off-peak electricity rates, keeping the energy bill at a comparable level as for a gas-fired oven. Absolute energy consumption is even lower for electrical infrared because the heat can be better targeted, which reduces the heat load in the production building and is in line with China’s policy of efficient and clean energy usage.

Electrical infrared emitters transfer heat without the need for a contact medium, where electromagnetic waves generate heat in the material to be heated. Infrared radiation is absorbed very well by powder, so that the powder mass heats up very quickly. Powder is gelled significantly faster than in a convection oven, and the transmitted power is higher than for gas-fired infrared ovens. Fast melting improves the surface quality and increases the throughput speed. In most cases, ovens are significantly shorter or the product speed is higher.

Infrared radiation offers many more advantages for power coating applications. Speed and space-saving have been demonstrated in the case study above. For flat parts like the metal plates mentioned above, it heats the surface evenly. But also round parts can be cured by rotating the part in front of the infrared heaters.

In comparison with hot air ovens, the powder is not disturbed or blown about. With no air movement, dust inclusions are also eliminated, so that quality is improved.

Compared to gas-fired infrared heaters, electrical infrared eliminates potentially dangerous gas supply in the factory. Electrical infrared systems also can be easily integrated in existing drying lines. This helps when upgrading existing hot air ovens in order to speed up production.

However, knowledge and experience is needed when designing an infrared system. There are many different types of infrared emitters, from short-wave and halogen heaters to medium-wave heaters. Each one has specific advantages that depend on the specific application of the customer. For example, using the wrong emitter for powder coating can easily lead to over-cooking the coating instead of curing it properly.

This is why Heraeus Noblelight operates test centers in five countries around the world, including the one in Shanghai. Here, customers can conduct experiments with their own materials together with the Heraeus experts. Thus, the customer can be sure that he selects the best-suited emitter for his application.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 12 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

For further information please contact:
Julia Fang
Heraeus Noblelight GmbH
Shanghai Office
Phone: +86 21 5426 3900
Email: julia.fang@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.cn
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>