Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Heaters from Heraeus Noblelight Save Space and Time in Powder Coating

14.06.2007
• Electrical Infrared Emitters Melt and Cure Powder Coatings Quickly
• Infrared Systems Help To Save Time And Space
• Case Study From China: Coating Of Guide Blades

Metals, plastics and wood – many materials today are powder-coated. Paints and lacquers are applied as powders, melted by the introduction of heat and finally cured. Electrical infrared emitters transfer large amounts of energy in a short time without the need for a contact medium. As a result, the oven length can be reduced or the production rate speeded up compared with conventional methods. Moreover, rapid melting of the powder helps to improve the surface quality of the coating. The example of a manufacturer of metal parts for technical consumer products shows how companies in China utilize the advantages of infrared technology.


Powder coating on flat metal parts is cured quicker and on less floorspace than with a gas-fired oven. Copyright Heraeus Noblelight 2007

Saving space was a key argument when a manufacturer of metal plates for technical consumer products in China compared gas-fired and electrical infrared technology for its new plant in Fujian province. As the market for these powder-coated products is very competitive and downward cost pressure is huge, the floorspace has to be used in the best possible way. After testing electrical infrared emitters in the Heraeus test center in Shanghai, the company was impressed by the speed of curing which made a much more compact design of the line possible. Compared to a convection oven, the line speed could be increased by more than 50%. The coating line contains two infrared sections: drying of the uncoated parts before coating and curing the powder at approx. 200OC after coating. Both process steps use medium-wave infrared modules which were built and equipped with emitters by Heraeus Noblelight. They can be controlled in different zones to save power when smaller parts are running through the curing oven. The power of the infrared heaters can also be easily adjusted to the different colors of coating, dark coating requiring less energy than light coating.

Further benefits of infrared technology became obvious when the line started operation. The quality of the coated products improved further because the powder is cured faster, without time to flow down the plates. “We have not had a single complaint since the new line started operation” says the Engineering and Maintenance Manger of the company. The company was further able to take advantage of lower off-peak electricity rates, keeping the energy bill at a comparable level as for a gas-fired oven. Absolute energy consumption is even lower for electrical infrared because the heat can be better targeted, which reduces the heat load in the production building and is in line with China’s policy of efficient and clean energy usage.

Electrical infrared emitters transfer heat without the need for a contact medium, where electromagnetic waves generate heat in the material to be heated. Infrared radiation is absorbed very well by powder, so that the powder mass heats up very quickly. Powder is gelled significantly faster than in a convection oven, and the transmitted power is higher than for gas-fired infrared ovens. Fast melting improves the surface quality and increases the throughput speed. In most cases, ovens are significantly shorter or the product speed is higher.

Infrared radiation offers many more advantages for power coating applications. Speed and space-saving have been demonstrated in the case study above. For flat parts like the metal plates mentioned above, it heats the surface evenly. But also round parts can be cured by rotating the part in front of the infrared heaters.

In comparison with hot air ovens, the powder is not disturbed or blown about. With no air movement, dust inclusions are also eliminated, so that quality is improved.

Compared to gas-fired infrared heaters, electrical infrared eliminates potentially dangerous gas supply in the factory. Electrical infrared systems also can be easily integrated in existing drying lines. This helps when upgrading existing hot air ovens in order to speed up production.

However, knowledge and experience is needed when designing an infrared system. There are many different types of infrared emitters, from short-wave and halogen heaters to medium-wave heaters. Each one has specific advantages that depend on the specific application of the customer. For example, using the wrong emitter for powder coating can easily lead to over-cooking the coating instead of curing it properly.

This is why Heraeus Noblelight operates test centers in five countries around the world, including the one in Shanghai. Here, customers can conduct experiments with their own materials together with the Heraeus experts. Thus, the customer can be sure that he selects the best-suited emitter for his application.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 12 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

For further information please contact:
Julia Fang
Heraeus Noblelight GmbH
Shanghai Office
Phone: +86 21 5426 3900
Email: julia.fang@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.cn
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht World's smallest optical implantable biodevice
26.04.2018 | Nara Institute of Science and Technology

nachricht Cell membrane inspires new ultrathin electronic film
26.04.2018 | University of Tokyo

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>