Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Engineering Research Widens Possibilities for Electronic Devices

03.04.2007
NSF-funded engineering research on microfluidics at the University of Cincinnati widens the possibilities on the horizon for electronic devices.
Parting a tiny red sea at the University of Cincinnati: Today’s — and tomorrow’s — sophisticated electronic devices may hinge on our ability to control microdrops of liquid on a surface. This effect, called electrowetting, controls the contact angle of a liquid on a hydrophobic surface through the use of an electric field.

As recently published in Applied Physics Letters and featured on the cover of the journal, Andrew Steckl’s research on liquid-state-field-effect transistors (LiquiFETs) promises improvements in such things as “lab on a chip” devices. These tiny devices, reminiscent of the “Fantastic Voyage,” can be introduced into the blood stream to monitor the blood’s chemistry. Steckl, a professor in the Department of Electrical and Computer Engineering in the College of Engineering, calls it “liquid logic” — using liquids to make electronic devices instead of solids.

One of the limitations of traditional health care instruments, for example, is that the information contained in the liquid (blood, in this example) must be translated into electrical signals that can be read in some kind of measuring device. Classical methods for this “translation” have used methods based on light and colorimetric measurement, direct optical sensing (using a video camera or detector) or combinations of optical excitation of fluorescent dyes.
Enter the liquid-state-field-effect transistors (LiquiFETs). Steckl and his doctoral student Duk Young Kim have designed and fabricated an electrowetting-based LiquiFET that operates in the liquid state and can directly convert charge-related information from the fluid into electronic, measurable signals. Such a device could co-exist in human body environment, for example, which is mostly liquid.

This technology could have applications in biology, health sciences and many other areas.

“In microelectronics, we usually think small,” says Steckl. “But there are applications where you have to think large — like big, big flat-panel televisions, with flexible panels perhaps.” Other applications might be for objects that have a peculiar shape, like the curves and corners of an automobile.

“Biomedical applications are also a natural,” Steckl continues. “Biomedical devices are both analytical — where they take measurements — and therapeutic — where they deliver treatment.” Analytical measurements need to be done in vitro (in glass, meaning in a test tube or other vessel) or in vivo (meaning in the body). Researchers are constantly striving for ways to optimize drug delivery to the patient. Devices perform many functions in drug delivery to measure the existing condition and to measure the effect of the medicine, for example. The doctor checks the condition after drug delivery, perhaps adjusts the dose, sees the effect and monitors the patient’s reaction.

“More research is needed, but perhaps the same device could be used for both analytical and therapeutic purposes,” says Steckl. “With these devices, you have a real-time evaluation of effectiveness and a real-time adjustment of the dose. The faster that the doctor can know the effects of the drug, the better.” More information on this research is available at the Web site for Steckl’s lab at UC.

UC is rapidly becoming a hot bed for research on electrowetting and more generally in microfluidics. For example, Steckl and his colleague Jason Heikenfeld have collaborated on electrowetting light valves and related applications. Many colleagues in UC’s electrical engineering, mechanical engineering, chemistry and other disciplines are also heavily involved in microfluidics research.
The research on LiquiFETs was made possible through funding by a program at the National Science Foundation called “SGER”: Small Grants for Exploratory Research. Proposals for small-scale, exploratory, and high-risk research in the fields of science, engineering and education normally supported by NSF may be submitted to individual programs. Such research is characterized as preliminary work on untested and novel ideas; ventures into emerging research ideas; the application of new expertise or new approaches to “established” research topics; having extreme urgency with regard to availability of or access to data, facilities or specialized equipment, including quick-response research on natural disasters and similar unanticipated events; and efforts of similar character likely to catalyze rapid and innovative advances.

Yin and yang: Here you see Professor Steckl’s use of electronic devices in biological materials. Next, learn about Professor Steckl’s use of biological materials in electronic devices.

Wendy Beckman | EurekAlert!
Further information:
http://www.uc.edu

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>