Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Engineering Research Widens Possibilities for Electronic Devices

03.04.2007
NSF-funded engineering research on microfluidics at the University of Cincinnati widens the possibilities on the horizon for electronic devices.
Parting a tiny red sea at the University of Cincinnati: Today’s — and tomorrow’s — sophisticated electronic devices may hinge on our ability to control microdrops of liquid on a surface. This effect, called electrowetting, controls the contact angle of a liquid on a hydrophobic surface through the use of an electric field.

As recently published in Applied Physics Letters and featured on the cover of the journal, Andrew Steckl’s research on liquid-state-field-effect transistors (LiquiFETs) promises improvements in such things as “lab on a chip” devices. These tiny devices, reminiscent of the “Fantastic Voyage,” can be introduced into the blood stream to monitor the blood’s chemistry. Steckl, a professor in the Department of Electrical and Computer Engineering in the College of Engineering, calls it “liquid logic” — using liquids to make electronic devices instead of solids.

One of the limitations of traditional health care instruments, for example, is that the information contained in the liquid (blood, in this example) must be translated into electrical signals that can be read in some kind of measuring device. Classical methods for this “translation” have used methods based on light and colorimetric measurement, direct optical sensing (using a video camera or detector) or combinations of optical excitation of fluorescent dyes.
Enter the liquid-state-field-effect transistors (LiquiFETs). Steckl and his doctoral student Duk Young Kim have designed and fabricated an electrowetting-based LiquiFET that operates in the liquid state and can directly convert charge-related information from the fluid into electronic, measurable signals. Such a device could co-exist in human body environment, for example, which is mostly liquid.

This technology could have applications in biology, health sciences and many other areas.

“In microelectronics, we usually think small,” says Steckl. “But there are applications where you have to think large — like big, big flat-panel televisions, with flexible panels perhaps.” Other applications might be for objects that have a peculiar shape, like the curves and corners of an automobile.

“Biomedical applications are also a natural,” Steckl continues. “Biomedical devices are both analytical — where they take measurements — and therapeutic — where they deliver treatment.” Analytical measurements need to be done in vitro (in glass, meaning in a test tube or other vessel) or in vivo (meaning in the body). Researchers are constantly striving for ways to optimize drug delivery to the patient. Devices perform many functions in drug delivery to measure the existing condition and to measure the effect of the medicine, for example. The doctor checks the condition after drug delivery, perhaps adjusts the dose, sees the effect and monitors the patient’s reaction.

“More research is needed, but perhaps the same device could be used for both analytical and therapeutic purposes,” says Steckl. “With these devices, you have a real-time evaluation of effectiveness and a real-time adjustment of the dose. The faster that the doctor can know the effects of the drug, the better.” More information on this research is available at the Web site for Steckl’s lab at UC.

UC is rapidly becoming a hot bed for research on electrowetting and more generally in microfluidics. For example, Steckl and his colleague Jason Heikenfeld have collaborated on electrowetting light valves and related applications. Many colleagues in UC’s electrical engineering, mechanical engineering, chemistry and other disciplines are also heavily involved in microfluidics research.
The research on LiquiFETs was made possible through funding by a program at the National Science Foundation called “SGER”: Small Grants for Exploratory Research. Proposals for small-scale, exploratory, and high-risk research in the fields of science, engineering and education normally supported by NSF may be submitted to individual programs. Such research is characterized as preliminary work on untested and novel ideas; ventures into emerging research ideas; the application of new expertise or new approaches to “established” research topics; having extreme urgency with regard to availability of or access to data, facilities or specialized equipment, including quick-response research on natural disasters and similar unanticipated events; and efforts of similar character likely to catalyze rapid and innovative advances.

Yin and yang: Here you see Professor Steckl’s use of electronic devices in biological materials. Next, learn about Professor Steckl’s use of biological materials in electronic devices.

Wendy Beckman | EurekAlert!
Further information:
http://www.uc.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>