Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swarm-bots could boldly go where no man has gone before

09.11.2006
An award-winning IST research team has developed highly unusual mini-robots, or swarm-bots, that work as a team to overcome challenges. While their cooperative behaviour is inspired by the actions of the tiny ant, their abilities could eventually take them to outer space.

Imitating insects such as ants, highly mobile small robots can accomplish physical tasks that no individual robot of the same size could manage. But if more sophisticated versions appear, then such machines could complete coordinated tasks in a way that could revolutionise the way we think about our world today.

An IST project in the Future and Emerging Technologies programme called Swarm-bots has lead the field in this area, and as a result the project partners have gained a great deal of publicity for their work. Marco Dorigo of the Université Libre de Bruxelles coordinated the project, and explains what the team achieved.

“We produced thirty-five complete s-bots [the individual bots that make up one swarm-bot], and completed many experiments with them,” he says. Just 12 cm in diameter, these mini-robots are packed with computing power, sensors and actuators, he adds.

In one trial, the s-bots linked up to bridge and thus pass over a hole in the ground. In another they jointly carried objects too weighty for a single robot to handle.

Dorigo likens the job of cooperatively finding objects to ant behaviour, although ants of course create their trails using pheromones.

He continues, "In our most complex experiment, we placed 20 robots in a big room to retrieve one object to a ‘nest’. This involved building a chain of eight robots spaced thirty centimetres apart and visible to one another. The other robots followed the chain to find and retrieve the object, all in just ten minutes.”

Each robot carries sophisticated technology, including a panoramic camera, sensors that detect sound, infrared, light, temperature and humidity, motors for the grippers (or claws), and WiFi and USB connections. A unique feature of the s-bots is their ability to attach to one another using the grippers – researchers have tested both hard and flexible versions.

The project partners successfully created s-bot types ranging from single autonomous machines to larger ‘swarms’. They also tested robotic control for simple tasks. “Control was vital to the project,” says Dorigo. “The robots autonomously attach to each other and move around in coordination. Their tracks and wheels guide their directional movement. Though the robots do not talk among themselves, they receive low-level signals – such as individual push and pull forces – allowing coordinated group movement.”

In one experiment, three robots called on a control program or ‘controller’ to minimise the traction force. Wirelessly downloaded into the robots, the controller was not designed by human beings.

The Swarm-bots coordinator won a Marie Curie Excellence Award in 2003 for his research on ant-colony optimisation and ant algorithms. In 2005, he was also awarded Belgium’s FNRS Prize (Prix Dr A. De Leeuw-Damry-Bourlart) for his contributions to the foundation of the ‘swarm intelligence’ discipline.

What could these robots do if they move beyond prototypes? “They could help in disasters, for instance picking through earthquake rubble to find trapped people. They could also be built into homes and buildings, emerging when needed to check out the local environment by creeping along the floor, walls or ceilings,” he says.

The s-bots are still far from real-world applications. Yet they have caught the attention of NASA. Famous for its Mars lander exploits, that organisation is seriously interested in robotic technologies that could be used to construct structures on other planets, if necessary without external direction.

Dorigo says challenges lie ahead in programming and controlling robots like this: “Today they exhibit simple or reactive behaviour. We would like to do things such as adaptive task allocation, for example using only ten robots out of one hundred to solve a problem, rather than all of them together.”

Dorigo's wish list also includes using muscle-like materials, as found in nature, instead of rigid metal and plastic. Enhanced memory would also help, allowing machines to find their own solutions to problems after assessing their environment.

Some of these wishes may be addressed in Swarmanoid, a three-year follow-on project launched in October 2006. Dorigo, who is also coordinating this project, hopes to create three different kinds of advanced robots. Featuring open-source software, these super s-bots will crawl, climb or fly, working alone or together.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>