Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swarm-bots could boldly go where no man has gone before

09.11.2006
An award-winning IST research team has developed highly unusual mini-robots, or swarm-bots, that work as a team to overcome challenges. While their cooperative behaviour is inspired by the actions of the tiny ant, their abilities could eventually take them to outer space.

Imitating insects such as ants, highly mobile small robots can accomplish physical tasks that no individual robot of the same size could manage. But if more sophisticated versions appear, then such machines could complete coordinated tasks in a way that could revolutionise the way we think about our world today.

An IST project in the Future and Emerging Technologies programme called Swarm-bots has lead the field in this area, and as a result the project partners have gained a great deal of publicity for their work. Marco Dorigo of the Université Libre de Bruxelles coordinated the project, and explains what the team achieved.

“We produced thirty-five complete s-bots [the individual bots that make up one swarm-bot], and completed many experiments with them,” he says. Just 12 cm in diameter, these mini-robots are packed with computing power, sensors and actuators, he adds.

In one trial, the s-bots linked up to bridge and thus pass over a hole in the ground. In another they jointly carried objects too weighty for a single robot to handle.

Dorigo likens the job of cooperatively finding objects to ant behaviour, although ants of course create their trails using pheromones.

He continues, "In our most complex experiment, we placed 20 robots in a big room to retrieve one object to a ‘nest’. This involved building a chain of eight robots spaced thirty centimetres apart and visible to one another. The other robots followed the chain to find and retrieve the object, all in just ten minutes.”

Each robot carries sophisticated technology, including a panoramic camera, sensors that detect sound, infrared, light, temperature and humidity, motors for the grippers (or claws), and WiFi and USB connections. A unique feature of the s-bots is their ability to attach to one another using the grippers – researchers have tested both hard and flexible versions.

The project partners successfully created s-bot types ranging from single autonomous machines to larger ‘swarms’. They also tested robotic control for simple tasks. “Control was vital to the project,” says Dorigo. “The robots autonomously attach to each other and move around in coordination. Their tracks and wheels guide their directional movement. Though the robots do not talk among themselves, they receive low-level signals – such as individual push and pull forces – allowing coordinated group movement.”

In one experiment, three robots called on a control program or ‘controller’ to minimise the traction force. Wirelessly downloaded into the robots, the controller was not designed by human beings.

The Swarm-bots coordinator won a Marie Curie Excellence Award in 2003 for his research on ant-colony optimisation and ant algorithms. In 2005, he was also awarded Belgium’s FNRS Prize (Prix Dr A. De Leeuw-Damry-Bourlart) for his contributions to the foundation of the ‘swarm intelligence’ discipline.

What could these robots do if they move beyond prototypes? “They could help in disasters, for instance picking through earthquake rubble to find trapped people. They could also be built into homes and buildings, emerging when needed to check out the local environment by creeping along the floor, walls or ceilings,” he says.

The s-bots are still far from real-world applications. Yet they have caught the attention of NASA. Famous for its Mars lander exploits, that organisation is seriously interested in robotic technologies that could be used to construct structures on other planets, if necessary without external direction.

Dorigo says challenges lie ahead in programming and controlling robots like this: “Today they exhibit simple or reactive behaviour. We would like to do things such as adaptive task allocation, for example using only ten robots out of one hundred to solve a problem, rather than all of them together.”

Dorigo's wish list also includes using muscle-like materials, as found in nature, instead of rigid metal and plastic. Enhanced memory would also help, allowing machines to find their own solutions to problems after assessing their environment.

Some of these wishes may be addressed in Swarmanoid, a three-year follow-on project launched in October 2006. Dorigo, who is also coordinating this project, hopes to create three different kinds of advanced robots. Featuring open-source software, these super s-bots will crawl, climb or fly, working alone or together.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>