Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Engineers Build a Better Battery – With Plastic

15.09.2006
It’s thin, light, flexible – and plastic. Brown University engineers Hyun-Kon Song and Tayhas Palmore have created a prototype polymer-based battery that packs more power than a standard alkaline battery and more storage capacity than a double-layered capacitor. Their work, published in Advanced Materials, will be of interest to the energy, defense and aerospace industries, which are looking at more efficient ways to deliver electricity.

Brown University engineers have created a new battery that uses plastic, not metal, to conduct electrical current. The hybrid device marries the power of a capacitor with the storage capacity of a battery.

A description of the prototype is published in Advanced Materials.

“Batteries have limits,” said Tayhas Palmore, an associate professor in Brown’s Division of Engineering. “They have to be recharged. They can be expensive. Most of all, they don’t deliver a lot of power. Another option is capacitors. These components, found in electronic devices, can deliver that big blast of power. But they don’t have much storage capacity. So what if you combined elements of both a battery and a capacitor?”

That’s the question Palmore set out to answer with Hyun-Kon Song, a former postdoctoral research associate at Brown who now works as a researcher at LG Chem, Ltd. They began to experiment with a new energy-storage system using a substance called polypyrrole, a chemical compound that carries an electrical current. Discovery and development of polypyrrole and other conductive polymers netted three scientists the 2000 Nobel Prize in Chemistry.

In their experiments, Palmore and Song took a thin strip of gold-coated plastic film and covered the tip with polypyrrole and a substance that alters its conductive properties. The process was repeated, this time using another kind of conduction-altering chemical. The result: Two strips with different polymer tips. The plastic strips were then stuck together, separated by a papery membrane to prevent a short circuit.

The result is a hybrid. Like a capacitor, the battery can be rapidly charged then discharged to deliver power. Like a battery, it can store and deliver that charge over long periods of time. During performance testing, the new battery performed like a hybrid, too. It had twice the storage capacity of an electric double-layer capacitor. And it delivered more than 100 times the power of a standard alkaline battery.

But Palmore said the new battery’s form, as well as its function, is exciting. In width and height, it is smaller than an iPod Nano. And it’s thinner, about as slim as an overhead transparency.

“You start thinking about this polymer and you start thinking that you can create batteries everywhere out of it,” Palmore said. “You could wrap cell phones in it or electronic devices. Conceivably, you could even make fabric out of this composite.”

Palmore said some performance problems – such as decreased storage capacity after repeated recharging – must be overcome before the device is marketable. But she expects strong interest. Battery makers are always looking for new ways to more efficiently store and deliver power. NASA and the U.S. Air Force are also exploring polymer-based batteries.

“What we’ve got is a good concept,” Palmore said. “Put electroactive molecules into conducting polymers and you can come up with all sorts of interesting materials that store energy.”

The National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>