Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny fuel cell might replace batteries in laptop computers, portable electronics

If you're frustrated by frequently losing battery power in your laptop computer, digital camera or portable music player, then take heart: A better source of "juice" is in the works.

Chemists at Arizona State University in Tempe have created a tiny hydrogen-gas generator that they say can be developed into a compact fuel cell package that can power these and other electronic devices -- from three to five times longer than conventional batteries of the same size and weight.

The generator uses a special solution containing borohydride, an alkaline compound that has an unusually high capacity for storing hydrogen, a key element that is used by fuel cells to generate electricity. In laboratory studies, a prototype fuel cell made from this generator was used to provide sustained power to light bulbs, radios and DVD players, the researchers say.

The fuel cell system can be packaged in containers of the same size and weight as conventional batteries and is recharged by refilling a fuel cartridge, they say. Research on these battery replacement fuel cells, which they claim are safer for the environment than regular batteries, was described today at the 232nd national meeting of the American Chemical Society.

"We're trying to maximize the usable hydrogen storage capacity of borohydride in order to make this fuel cell power source last longer," says study leader Don Gervasio, Ph.D., a chemist at the University's Biodesign Institute, Center for Applied NanoBioScience. "That could lead to the longest lasting power source ever produced for portable electronics."

One of the challenges in fuel cell development is finding hydrogen-rich compounds for the fuel source. Many different hydrogen sources have been explored for use in fuel cells, including metal hydride "sponges" and liquids such as gasoline, methanol, ethanol and even vegetable oil.

Recently, borohydride has shown promise as a safe, energy-dense hydrogen storage solution. Unlike the other fuel sources, borohydride works at room temperature and does not require high temperatures in order to liberate hydrogen, Gervasio says.

Gervasio and his associates are developing novel chemical additives to increase the useful hydrogen storage capacity of the borohydride solution by as much as two to three times that of simple aqueous sodium borohydride solutions that are currently being explored for fuel cell development. These additives prevent the solution from solidifying, which could potentially clog or damage the hydrogen generator and cause it to fail.

In developing the prototype fuel cell system, the researchers housed the solution in a tiny generator containing a metal catalyst composed of ruthenium metal. In the presence of the catalyst, the borohydride in the water-based solution reacts with water to form hydrogen gas.

The gas leaves the hydrogen generator by moving across a special membrane separating the generator from the fuel cell component. The hydrogen gas then combines with oxygen inside the fuel cell to generate water and electricity, which can then be used to power the portable electronic device. Commercialization of a practical version of this fuel cell could take as many as three to five years, Gervasio says.

Michael Bernstein | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>