Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice develops first method to sort nanotubes by size

26.06.2006
Method sorts nanotubes based on unique electric properties

Rice University scientists have developed the first method for sorting semiconducting carbon nanotubes based on their size, a long-awaited development that could form the basis of a nanotube purification system capable of producing the necessary feedstocks for nano-circuits, therapeutic agents, next-generation power cables and more.

Nanotubes, tiny cylinders of carbon no wider than a strand of DNA, possess a tantalizing array of properties coveted by materials scientists. Nanotubes are stronger than steel, but weigh one sixth as much. Some varieties are excellent semiconductors, while others are metals that conduct electricity as well as copper.

But there are dozens of varieties of nanotubes, each slightly different in size and atomic structure and each with very different properties. For many applications, engineers need to use just one type of nanotube, but that's not possible today because all production methods turn out a mishmash of types.

New research due to appear in an upcoming issue of the Journal of the American Chemical Society describes a new method that uses electric fields to sort nanotubes by size.

"People have developed sorting methods based on both chemical and electrical properties, but ours is the first that's capable of sorting semiconducting nanotubes based upon their dielectric constant, which is determined by their diameter," said corresponding author, Howard Schmidt, executive director of Rice's Carbon Nanotechnology Laboratory (CNL).

To sort nanotubes, the CNL team built a system that capitalizes on the fact that each type of nanotube has a unique dielectric constant – a term that refers to a material's ability to store electrostatic energy. CNL scientists created an electrified chamber and pumped a solution of dissolved nanotubes through it. The chamber traps metallic nanotubes and causes semiconducting varieties to float at different levels in the chamber. The smaller the diameter of the nanotube, the larger the dielectric constant and the lower in the system the tubes float. By varying the speed of flow through the system – with upper-level currents traveling faster than lower-level currents – the scientists were able to collect samples that had three times more small tubes than large and vice versa.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>