Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers build tiny batteries with viruses

07.04.2006


MIT scientists have harnessed the construction talents of tiny viruses to build ultra-small "nanowire" structures for use in very thin lithium-ion batteries. By manipulating a few genes inside these viruses, the team was able to coax the organisms to grow and self-assemble into a functional electronic device.

The goal of the work, led by MIT Professors Angela Belcher, Paula Hammond and Yet-Ming Chiang, is to create batteries that cram as much electrical energy into as small or lightweight a package as possible. The batteries they hope to build could range from the size of a grain of rice up to the size of existing hearing aid batteries.

Batteries consist of two opposite electrodes - an anode and cathode - separated by an electrolyte. In the current work, the MIT team used an intricate assembly process to create the anode.



Specifically, they manipulated the genes in a laboratory strain of a common virus, making the microbes collect exotic materials - cobalt oxide and gold. And because these viruses are negatively charged, they can be complexed between oppositely charged polymers to form thin, flexible sheets.

The result? A dense, virus-loaded film that serves as an anode.

A report on the work will appear in the April 7 issue of Science.

Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering; Chiang, the Kyocera Professor of Materials Science and Engineering (MSE); and Hammond, the Mark A. Hyman Professor of Chemical Engineering (ChE), led a team of five additional researchers.

They are MSE graduate students Ki Tae Nam (the lead author), Dong-Wan Kim, Chung-Yi Chiang and Nonglak Meethong, and ChE postdoctoral associate Pil. J. Yoo.

In their research, the MIT team altered the virus’s genes so they make protein coats that collect molecules of cobalt oxide, plus gold. The viruses then align themselves on the polymer surface to form ultrathin wires. Each virus, and thus the wire, is only 6 nanometers (6 billionths of a meter) in diameter, and 880 nanometers in length.

"We can make them in larger diameters," Belcher said, "but they are all 880 nanometers in length," which matches the length of the individual virus particles. And, "once we’ve altered the genes of the virus to grow the electrode material, we can easily clone millions of identical copies of the virus to use in assembling our batteries.

"For the metal oxide we chose cobalt oxide because it has very good specific capacity, which will produce batteries with high energy density," meaning it can store two or three times more energy for its size and weight compared to previously used battery electrode materials. And adding the gold further increased the wires’ energy density, she added.

Equally important, the reactions needed to create nanowires occur at normal room temperatures and pressures, so there is no need for expensive pressure-cooking technology to get the job done.

The work is important, too, because energy density is a vital quality in batteries. A lack of energy density - meaning the amount of charge a battery of a given size can usefully carry - is what has hampered development of electric cars, since existing batteries are generally too heavy and too weak to compete with gasoline as an energy source. Still, battery technology is gradually being improved and may someday even become competitive as the price of oil escalates.

"The nanoscale materials we’ve made supply two to three times the electrical energy for their mass or volume, compared to previous materials," the team reported.

The researchers’ work was spurred by "growing evidence that ’nanostructured’ materials can improve the electrochemical properties of lithium-ion batteries," compared to more conventional batteries based on older technologies, the team wrote in Science.

But to create new battery materials, Belcher noted, special control is needed so just the right amounts of the exotic materials end up exactly where they belong. Cobalt oxide "has shown excellent electrochemical cycling properties, and is thus under consideration as an electrode for advanced lithium-ion batteries."

In earlier research, Belcher and colleagues learned they could exploit the abilities of microbes to recognize the correct molecules and assemble them where they belong.

A new means of inducing this order comes from self-assembly, a tool that is commonly used now in Hammond’s lab. "By harnessing the electrostatic nature of the assembly process with the functional properties of the virus, we can create highly ordered composite thin films combining the function of the virus and polymer systems," Hammond said.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>