Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student entrepreneurs: New sensor will help guarantee freshness

16.03.2006


Grocers, florists and even pharmacists may soon have a better way to monitor the quality of the products they get from suppliers: a sensor that will tell how long before a product spoils or passes its expiration date.



A team of University of Florida engineering students has designed and built a prototype of the new smart sensor, which can also record and wirelessly transmit information to retailers about when and where glitches occur as a product is being shipped.

“We think this sensor will make the perishable supply chain both safer and more efficient,” said Bruce Welt, an assistant professor of agricultural and biological engineering and a faculty adviser on the project. “Hopefully, that will translate into lower cost, better quality products for consumers.”


Many shippers today are reluctant to use disposable tags or labels that turn color or otherwise indicate if a product has passed its prime. One problem is that the tags don’t say when spoilage occurred. Nor do they tell whether “fresh” goods will soon spoil. The former can make it hard to decide who is responsible when a spoiled product arrives. The latter can result in stores stocking merchandise that appears fine but quickly goes bad.

Not only that, because products have different spoilage rates and temperatures, the tags have to have contain different chemicals or otherwise be tailored to individual products. That raises their cost and increases the possibility of errors.

Shippers also rely on temperature monitors that indicate if, and by how much, a product’s recommended trucking temperature has been exceeded. That’s a problem because the devices may record excessive temperature near only one pallet of many pallets stacked together in one shipping container. That can force the entire shipment to be discarded even if most remained very near or within temperature guidelines.

“The reality is that for small violations of these temperatures, the products are fine but get thrown away anyway,” Welt said.

With Bill Eisenstadt, an associate professor of electrical and computer engineering, leading the technical development, six seniors majoring in engineering developed what Welt calls a “sensor platform” that is capable of tracking and interpreting not only temperature but also humidity, the shock of a product being dropped and other variables.

In the temperature setting, the half dollar-sized device checks the temperature. It then merges its readings with an algorithm, or set of computer instructions, that electronically mimics the spoilage characteristics of milk, fish, flowers or whatever product is being shipped. The device can communicate its results constantly and in real time via a wireless transmitter.

The result: Retailers can use a laptop to instantly check the status of an incoming product, learning not only whether it is fresh but also how long it has until it spoils – and at what point if any temperatures spiked above normal during shipping.

A retailer would know that “this load of fish is pristine, that it came right off the boat and that it has several days before it goes bad,” Eisenstadt said.

The engineering student team is working with UF business and law students to patent and market the device as part of the university’s Integrated Technology Ventures program, which seeks to immerse students in entrepreneurial activities surrounding UF technologies. Although only three years old, the program has already spun off a Gainesville-based company that sells a device that monitors groundwater contamination.

Eisenstadt said one hurdle for marketing the sensor is finding the right combination of features and cost. The current sensor platform is designed for markets with stringent shipping standards such as pharmaceuticals but can be adapted and simplified to meet other needs.

The Integrated Technology Ventures program is operated by the UF Office of Technology Licensing, the UF Center for Entrepreneurship and Innovation, and the Integrated Product and Process Design Program. Faculty and students are organized as a virtual company. The company is lead by a CEO and includes a business development of business students, a technology team of engineers and a legal team of UF law students.

Learning to work with colleagues in different disciplines is a big part of the challenge of the program, students say.

“Everyone has to learn everyone else’s field in six months,” said Michelle Wasserlauf, a senior majoring in industrial engineering. “The engineers have to communicate with the business people, and at the same time we have to learn all the legal aspects of the project.”

Eistenstadt said a patent application has been filed for the device, and that the team recently received a $15,000 grant to continue developing the technology this summer.

Bruce Welt | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>