Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NMSU/Wake Forest solar breakthrough will help spur viability of alternative energy


Imagine being able to paint your roof with enough alternative energy to heat and cool your home. What if soldiers in the field could carry an energy source in a roll of plastic wrap in their backpacks?

Those ideas sound like science fiction þu particularly in the wake of the rising costs of fossil fuel.

But both are on the way to becoming reality because of a breakthrough in solar research by a team of scientists from New Mexico State University and Wake Forest University.

While traditional solar panels are made of silicon, which is expensive, brittle and shatters like glass, organic solar cells being developed by this team are made of plastic that is relatively inexpensive, flexible, can be wrapped around structures or even applied like paint, said physicist Seamus Curran, head of the nanotechnology laboratory at NMSU. Nanotechnology, or molecular manufacturing, refers to the ability to build things one atom at a time.

The relatively low energy efficiency levels produced by organic solar cells have been a drawback. To be effective producers of energy, they must be able to convert 10 percent of the energy in sunlight to electricity. Typical silicon panels are about 12 percent energy conversion efficient.

That level of energy conversion has been a difficult reach for researchers on organic solar technology, with many of them hitting about 3 to 4 percent. But the NMSU/Wake Forest team has achieved a solar energy efficiency level of 5.2 percent. The announcement was made at the Santa Fe Workshop on Nanoengineered Materials and Macro-Molecular Technologies.

"This means we are closer to making organic solar cells that are available on the market," Curran said.

Conventional thinking has been that that landmark was at least a decade away. With this group’s research, it may be only four or five years before plastic solar cells are a reality for consumers, Curran added.

The importance of the breakthrough cannot be underestimated, Curran said.

"We need to look into alternative energy sources if the United States is to reduce its dependence on foreign sources," the NMSU physics professor said.

New Mexico Economic Development Department Secretary Rick Homans added, "This breakthrough pushes the state of New Mexico further ahead in the development of usable solar energy, a vital national resource. It combines two of the important clusters on which the state is focused: renewable energy and micro nano systems, and underlines the strong research base of our state universities."

A cheap, flexible plastic made of a polymer blend would revolutionize the solar market, Curran said.

"Our expectation is to get beyond 10 percent in the next five years," Curran said. "Our current mix is using polymer and carbon buckyballs (fullerenes) and good engineering from Wake Forest and unique NSOM imaging from NMSU to get to that point."

NSOM or near-field scanning optical microscopy allows them to scan objects too small for regular microscopes.

The development is an outgrowth of the collaborative’s work developing high-tech coatings for military aircraft, a program supported by Sens. Pete Domenici, R-N.M., and Jeff Bingaman, D-N.M., Curran said.

Mary Benanti | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>