Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for trapping light may improve communications technologies

22.08.2005


A discovery by Princeton researchers may lead to an efficient method for controlling the transmission of light and improve new generations of communications technologies powered by light rather than electricity.


Princeton researchers tested whether quasicrystals -- an unusual form of solid -- would be useful for controlling the path of light by constructing a three-dimensional, softball-sized model of such a structure with 4,000 centimeter-long polymer rods.
Photo courtesy of Paul Steinhardt



The discovery could be used to develop new structures that would work in the same fashion as an elbow joint in plumbing by enabling light to make sharp turns as it travels through photonic circuits. Fiber-optic cables currently used in computers, televisions and other devices can transport light rapidly and efficiently, but cannot bend at sharp angles. Information in the light pulses has to be converted back into cumbersome electrical signals before they can be sorted and redirected to their proper destinations.

In an experiment detailed in the Aug. 18 issue of Nature, the researchers constructed a three-dimensional model of a quasicrystal made from polymer rods to test whether such structures are useful for controlling the path of light. A quasicrystal is an unusual form of solid composed of two building blocks, or groups of atoms, that repeat regularly throughout the structure with two different spacings. Ordinary crystals are made from a single building block that repeats with all equal spacings. The difference enables quasicrystals to have more spherical symmetries that are impossible for crystals.


Ordinary crystals had been considered the best structure for making junctions in photonic circuits. But the researchers proved for the first time that quasicrystal structures are better for trapping and redirecting light because their structure is more nearly spherical. Their model, which had the same symmetry as a soccer ball, showed that the quasicrystal design could block light from escaping no matter which direction it traveled.

The finding represents an advance for the burgeoning field of photonics -- in which light replaces electricity as a means for transmitting and processing information -- and could lead to the development of faster telecommunications and computing devices.

"The search for a structure that blocks the passage of light in all directions has fascinated physicists and engineers for the past two decades," said Princeton physicist Paul Steinhardt, a co-author of the Nature paper, who invented the concept of quasicrystals with his student Dov Levine at the University of Pennsylvania in 1984.

"Controlled light can be directed, switched and processed like electrons in an electronic circuit, and such photonic devices have many applications in research and in communications," Steinhardt noted.

Co-author Paul Chaikin, a former Princeton professor now at the Center for Soft Matter Research at New York University, said, "Ultimately, photonics is a better method for channeling information than electronics -- it consumes less energy and it’s faster."

The paper’s other co-authors are Weining Man, who worked on the project as part of her doctoral thesis in Princeton’s physics department, and Mischa Megens, a researcher at Philips Research Laboratories in the Netherlands.

To conduct their experiment, the researchers constructed the world’s first model of a three-dimensional photonic quasicrystal, which was a little larger than a softball and made from 4,000 centimeter-long polymer rods. They observed how microwaves were blocked at certain angles in order to gauge how well the structure would control light passing through it.

Building the physical model was a breakthrough that proved more valuable than using complex mathematical calculations, which had been a hurdle in previous efforts to evaluate the effectiveness of photonic quasicrystals in blocking light.

"The pattern in which photons are blocked or not blocked had never really been computed," Steinhardt said. "In the laboratory, we were able to construct a device that was effectively like doing a computer simulation to see the patterns of transmission."

Chaikin added, "We showed that it has practical applications, and we also found out some properties of quasicrystals that we didn’t know before."

The researchers are now exploring ways of miniaturizing the structure in order to utilize the device with visible light instead of microwaves. They also are examining whether the quasicrystal designs may be useful in electronic and acoustic applications.

Eric Quinones | EurekAlert!
Further information:
http://www.phy.princeton.edu/~steinh/quasiphoton/

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>