Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for trapping light may improve communications technologies


A discovery by Princeton researchers may lead to an efficient method for controlling the transmission of light and improve new generations of communications technologies powered by light rather than electricity.

Princeton researchers tested whether quasicrystals -- an unusual form of solid -- would be useful for controlling the path of light by constructing a three-dimensional, softball-sized model of such a structure with 4,000 centimeter-long polymer rods.
Photo courtesy of Paul Steinhardt

The discovery could be used to develop new structures that would work in the same fashion as an elbow joint in plumbing by enabling light to make sharp turns as it travels through photonic circuits. Fiber-optic cables currently used in computers, televisions and other devices can transport light rapidly and efficiently, but cannot bend at sharp angles. Information in the light pulses has to be converted back into cumbersome electrical signals before they can be sorted and redirected to their proper destinations.

In an experiment detailed in the Aug. 18 issue of Nature, the researchers constructed a three-dimensional model of a quasicrystal made from polymer rods to test whether such structures are useful for controlling the path of light. A quasicrystal is an unusual form of solid composed of two building blocks, or groups of atoms, that repeat regularly throughout the structure with two different spacings. Ordinary crystals are made from a single building block that repeats with all equal spacings. The difference enables quasicrystals to have more spherical symmetries that are impossible for crystals.

Ordinary crystals had been considered the best structure for making junctions in photonic circuits. But the researchers proved for the first time that quasicrystal structures are better for trapping and redirecting light because their structure is more nearly spherical. Their model, which had the same symmetry as a soccer ball, showed that the quasicrystal design could block light from escaping no matter which direction it traveled.

The finding represents an advance for the burgeoning field of photonics -- in which light replaces electricity as a means for transmitting and processing information -- and could lead to the development of faster telecommunications and computing devices.

"The search for a structure that blocks the passage of light in all directions has fascinated physicists and engineers for the past two decades," said Princeton physicist Paul Steinhardt, a co-author of the Nature paper, who invented the concept of quasicrystals with his student Dov Levine at the University of Pennsylvania in 1984.

"Controlled light can be directed, switched and processed like electrons in an electronic circuit, and such photonic devices have many applications in research and in communications," Steinhardt noted.

Co-author Paul Chaikin, a former Princeton professor now at the Center for Soft Matter Research at New York University, said, "Ultimately, photonics is a better method for channeling information than electronics -- it consumes less energy and it’s faster."

The paper’s other co-authors are Weining Man, who worked on the project as part of her doctoral thesis in Princeton’s physics department, and Mischa Megens, a researcher at Philips Research Laboratories in the Netherlands.

To conduct their experiment, the researchers constructed the world’s first model of a three-dimensional photonic quasicrystal, which was a little larger than a softball and made from 4,000 centimeter-long polymer rods. They observed how microwaves were blocked at certain angles in order to gauge how well the structure would control light passing through it.

Building the physical model was a breakthrough that proved more valuable than using complex mathematical calculations, which had been a hurdle in previous efforts to evaluate the effectiveness of photonic quasicrystals in blocking light.

"The pattern in which photons are blocked or not blocked had never really been computed," Steinhardt said. "In the laboratory, we were able to construct a device that was effectively like doing a computer simulation to see the patterns of transmission."

Chaikin added, "We showed that it has practical applications, and we also found out some properties of quasicrystals that we didn’t know before."

The researchers are now exploring ways of miniaturizing the structure in order to utilize the device with visible light instead of microwaves. They also are examining whether the quasicrystal designs may be useful in electronic and acoustic applications.

Eric Quinones | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>