Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop novel multi-color light-emitting diodes

19.05.2005


A team of University of California scientists at Los Alamos National Laboratory have developed the first completely inorganic, multi-color light-emitting diodes (LEDs) based on colloidal quantum dots encapsulated in a gallium nitride (GaN) semiconductor. The work represents a new "hybrid" approach to the development of solid-state lighting. Solid-state lighting offers the advantages of reduced operating expenses, lower energy consumption and more reliable performance.

In research published in the current issue of the scientific journal Nano Letters, the team reports on the first successful demonstration of electroluminescence from an all-inorganic, nanocrystal-based architecture where semiconductor nanocrystals are incorporated into a p-n junction formed from semiconducting GaN injection layers. The new LEDs utilize a novel type of color-selectable nanoemitters, colloidal quantum dots, and makes use of emerging GaN manufacturing technologies.

According to Klimov, who leads the nanocrystal-LED research effort, "numerous technologies could benefit from energy efficient, color-selectable solid-state lighting sources ranging from automotive and aircraft instrument displays to traffic signals and computer displays. Semiconductor nanocrystals, known also as quantum dots, are attractive nanoscale light emitters that combine size-controlled emission colors and high emission efficiencies with chemical flexibility and excellent photostability. The use of nanocrystals in light-emitting technologies has, however, always been hindered by the difficulty of making direct electrical connections to the nanocrystals. By putting the quantum dots between GaN injection layers, we’ve gotten around this difficulty."



The secret to making the electrical connection to the quantum dots is the use of a technique developed at Los Alamos by Mark Hoffbauer and his team that utilizes a beam of energetic, neutral nitrogen atoms for growing GaN films. The technique, called ENABLE (for Energetic Neutral Atom Beam Lithography/Epitaxy), allows for the low-temperature encapsulation of nanocrystals in semiconducting GaN without adversely affecting their luminescence properties. By encapsulating one nanocrystal layer or two layers of nanocrystals of different sizes, the researchers have demonstrated that their LEDs can emit light of either a single color or two different colors. The two color-operation regime is an important step toward creating devices that produce white light.

The development of the multicolor LEDs is the result of a collaboration between two Laboratory research groups: Klimov’s quantum-dot team and Hoffbauer’s team developing advanced nanoscale processing technologies. Laboratory researchers critical to the project’s success also include Alexander Mueller, Melissa Petruska, Marc Achermann, Donald Werder, and Elshan Akhadov. Daniel Koleske of Sandia National Laboratories provided the GaN substrates used for the LED structures.

The Los Alamos Laboratory-Directed Research and Development (LDRD) program provided funding for the Los Alamos work as an Exploratory Research (ER) project. The research fits into a broader area of expertise that Los Alamos National Laboratory maintains in the field of nanotechnology in general, and quantum dot research in particular.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>