Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon solution could lead to a truly long-life battery

11.05.2005


New devices may provide power for decades



Using some of the same manufacturing techniques that produce microchips, researchers have created a porous-silicon diode that may lead to improved betavoltaics. Such devices convert low levels of radiation into electricity and can have useful lives spanning several decades.

While producing as little as one-thousandth of the power of conventional chemical batteries, the new "BetaBattery" concept is more efficient and potentially less expensive than similar designs and should be easier to manufacture. If the new diode proves successful when incorporated into a finished battery, it could help power such hard-to-service, long-life systems as structural sensors on bridges, climate monitoring equipment and satellites.


The battery’s staying power is tied to the enduring nature of its fuel, tritium, a hydrogen isotope that releases electrons in a process called beta decay. The porous-silicon semiconductors generate electricity by absorbing the electrons, just as a solar cell generates electricity by absorbing energy from incoming photons of light.

Supported by grants from the NSF Small Business Innovation Research (SBIR) program, a multi-disciplinary team of researchers from the University of Rochester, the University of Toronto, Rochester Institute of Technology and BetaBatt, Inc. of Houston, Texas, describe their new diode in the May 13 issue of Advanced Materials.

Researchers have been attempting to convert radiation into electricity since the development of the transistor more than 50 years ago. Mastering the junctions between relatively electron-rich and electron-poor regions of semiconductor material (p-n junctions) led to many modern electronic products.

Yet, while engineers have been successful at capturing electromagnetic radiation with solar cells, the flat, thin devices have been unable to collect enough beta-decay electrons to yield a viable betavoltaic device.

The BetaBatt will not be the first battery to harness a radioactive source, or even the first to use tritium, but the new cell will have a unique advantage - the half-millimeter-thick silicon wafer into which researchers have etched a network of deep pores. This structure vastly increases the exposed surface area, creating a device that is 10 times more efficient than planar designs.

"The 3-D porous silicon configuration is excellent for absorbing essentially all the kinetic energy of the source electrons," says co-author Nazir Kherani of the University of Toronto. Instead of generating current by absorbing electrons at the outermost layer of a thin sheet, surfaces deep within these porous silicon wafers accommodate a much larger amount of incoming radiation. In early tests, nearly all electrons emitted during the tritium’s beta decay were absorbed.

There were a number of practical reasons for selecting tritium as the source of energy, says co-author Larry Gadeken of BetaBatt - particularly safety and containment.

"Tritium emits only low energy beta particles (electrons) that can be shielded by very thin materials, such as a sheet of paper," says Gadeken. "The hermetically-sealed, metallic BetaBattery cases will encapsulate the entire radioactive energy source, just like a normal battery contains its chemical source so it cannot escape."

Even if the hermetic case were to be breached, adds Gadeken, the source material the team is developing will be a hard plastic that incorporates tritium into its chemical structure. Unlike a chemical paste, the plastic cannot not leak out or leach into the surrounding environment.

Researchers and manufacturers have been producing porous silicon for decades, and it is commonly used for antireflective coatings, light emitting devices, and photon filters for fiber optics. However, the current research is the first patented betavoltaic application for porous silicon and the first time that 3-D p-n diodes have been created with standard semiconductor industry techniques.

"The betavoltaic and photovoltaic applications of 3-D porous silicon diodes will result in an exciting arena of additional uses for this versatile material," says co-author Philippe Fauchet of the University of Rochester.

"This is the first time that uniform p-n junctions have been made in porous silicon, which is exciting from the point of view of materials science," says Fauchet. For example, because of its characteristics and photon sensitivity, each diode pore could serve as an individual detector, potentially creating an extremely high-resolution image sensor.

"The ease of using standard semiconductor processing technology to fabricate 3-D p-n junctions was surprising," adds co-author Karl Hirschman of the Rochester Institute of Technology. That manufacturing ease is an important breakthrough for increasing production and lowering costs, and it makes the device scalable and versatile for a range of applications.

"The initial applications will be for remote or inaccessible sensors and devices where the availability of long-life power is critical," says Gadeken.

The BetaBattery may prove better suited to certain tasks than chemical batteries when power needs are limited. The structures are robust--tolerant to motion and shock, and functional from -148° Fahrenheit (-100° Celsius) to 302° F (150°C)--and may never have to be changed for the lifetime of the device.

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>