Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon solution could lead to a truly long-life battery

11.05.2005


New devices may provide power for decades



Using some of the same manufacturing techniques that produce microchips, researchers have created a porous-silicon diode that may lead to improved betavoltaics. Such devices convert low levels of radiation into electricity and can have useful lives spanning several decades.

While producing as little as one-thousandth of the power of conventional chemical batteries, the new "BetaBattery" concept is more efficient and potentially less expensive than similar designs and should be easier to manufacture. If the new diode proves successful when incorporated into a finished battery, it could help power such hard-to-service, long-life systems as structural sensors on bridges, climate monitoring equipment and satellites.


The battery’s staying power is tied to the enduring nature of its fuel, tritium, a hydrogen isotope that releases electrons in a process called beta decay. The porous-silicon semiconductors generate electricity by absorbing the electrons, just as a solar cell generates electricity by absorbing energy from incoming photons of light.

Supported by grants from the NSF Small Business Innovation Research (SBIR) program, a multi-disciplinary team of researchers from the University of Rochester, the University of Toronto, Rochester Institute of Technology and BetaBatt, Inc. of Houston, Texas, describe their new diode in the May 13 issue of Advanced Materials.

Researchers have been attempting to convert radiation into electricity since the development of the transistor more than 50 years ago. Mastering the junctions between relatively electron-rich and electron-poor regions of semiconductor material (p-n junctions) led to many modern electronic products.

Yet, while engineers have been successful at capturing electromagnetic radiation with solar cells, the flat, thin devices have been unable to collect enough beta-decay electrons to yield a viable betavoltaic device.

The BetaBatt will not be the first battery to harness a radioactive source, or even the first to use tritium, but the new cell will have a unique advantage - the half-millimeter-thick silicon wafer into which researchers have etched a network of deep pores. This structure vastly increases the exposed surface area, creating a device that is 10 times more efficient than planar designs.

"The 3-D porous silicon configuration is excellent for absorbing essentially all the kinetic energy of the source electrons," says co-author Nazir Kherani of the University of Toronto. Instead of generating current by absorbing electrons at the outermost layer of a thin sheet, surfaces deep within these porous silicon wafers accommodate a much larger amount of incoming radiation. In early tests, nearly all electrons emitted during the tritium’s beta decay were absorbed.

There were a number of practical reasons for selecting tritium as the source of energy, says co-author Larry Gadeken of BetaBatt - particularly safety and containment.

"Tritium emits only low energy beta particles (electrons) that can be shielded by very thin materials, such as a sheet of paper," says Gadeken. "The hermetically-sealed, metallic BetaBattery cases will encapsulate the entire radioactive energy source, just like a normal battery contains its chemical source so it cannot escape."

Even if the hermetic case were to be breached, adds Gadeken, the source material the team is developing will be a hard plastic that incorporates tritium into its chemical structure. Unlike a chemical paste, the plastic cannot not leak out or leach into the surrounding environment.

Researchers and manufacturers have been producing porous silicon for decades, and it is commonly used for antireflective coatings, light emitting devices, and photon filters for fiber optics. However, the current research is the first patented betavoltaic application for porous silicon and the first time that 3-D p-n diodes have been created with standard semiconductor industry techniques.

"The betavoltaic and photovoltaic applications of 3-D porous silicon diodes will result in an exciting arena of additional uses for this versatile material," says co-author Philippe Fauchet of the University of Rochester.

"This is the first time that uniform p-n junctions have been made in porous silicon, which is exciting from the point of view of materials science," says Fauchet. For example, because of its characteristics and photon sensitivity, each diode pore could serve as an individual detector, potentially creating an extremely high-resolution image sensor.

"The ease of using standard semiconductor processing technology to fabricate 3-D p-n junctions was surprising," adds co-author Karl Hirschman of the Rochester Institute of Technology. That manufacturing ease is an important breakthrough for increasing production and lowering costs, and it makes the device scalable and versatile for a range of applications.

"The initial applications will be for remote or inaccessible sensors and devices where the availability of long-life power is critical," says Gadeken.

The BetaBattery may prove better suited to certain tasks than chemical batteries when power needs are limited. The structures are robust--tolerant to motion and shock, and functional from -148° Fahrenheit (-100° Celsius) to 302° F (150°C)--and may never have to be changed for the lifetime of the device.

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>