Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LUCA technologies confirms real-time methane generation

29.04.2005


May provide opportunity to convert finite oil resource to long-term production of natural gas

Luca Technologies LLC today announced that its researchers have confirmed the presence of a resident, methane-generating community of microorganisms ("microbial consortium") in substrate samples taken from the 110,000 acre Monument Butte oilfield located in North Eastern Utah. This site represents the latest in a series of active "GeobioreactorsTM" that Luca Technologies has identified since its first demonstration of this phenomenon in the Powder River Basin coalfields of Wyoming. Geobioreactors are sites where microbial conversion of underground hydrocarbon deposits (oil, oil shales, and coal) to methane is ongoing. Such Geobioreactors may offer the potential of turning currently finite energy reserves into methane "farms" capable of long-term, sustainable energy generation.

"The hydrocarbon resources available in the Monument Butte oilfield are very large, making the possibility of shifting from oil production to the ongoing farming of clean, natural gas an attractive consideration," said Robert Pfeiffer, president and chief executive officer of Luca Technologies. He noted that the Monument Butte site was one of six oil fields across the United States that Luca has been studying. The company has demonstrated two of those sites to be robust, methane-generating Geobioreactors, and two to be less actively generating methane. Three additional sites are not currently active but may have the potential to be turned into active Geobioreactors through cross-inoculation with microbial consortia from active sites.



Luca scientists have also begun to isolate and identify particular members of the Monument Butte microbial consortium. Through partial DNA sequence analysis, the company has identified Clostridia and Thermatoga as two of the key members of this consortium. Clostridia form a broad genus of bacteria known for their diverse metabolic pathways. Clostridia frequently thrive in anaerobic environments and many species are known for their heat tolerance. Thermatoga microorganisms are known to play a role in the anaerobic oxidation of hydrocarbons to alcohols, organic acids and carbon dioxide. Thermatoga also thrive in high temperature environments, such as those found in sub-surface oil wells.

"Oil within the Monument Butte field has a waxy composition that may facilitate the strong real-time methane generation we see at this site," commented Mr. Pfeiffer. "If so, then areas with large accumulations of waxy oil – for example, the Daqing Field in Northeast China -- could prove to be important sites for the bioconversion of residual oil to methane and the restoration of these ’spent’ sites to economic energy production."

Potential for Methane "Farming"

It has long been known that certain microorganisms are "methanogens" – microbes that generate methane by metabolizing organic materials including various hydrocarbons. While it has also been generally accepted that many of the known methane deposits were produced by such organisms, most of this production was thought to have occurred millions of years ago, when the hydrocarbon deposits were less mature and closer to the surface of the earth.

Luca scientists, employing the tools of modern biotechnology and genomics, have now shown that living methane generating, microbial consortia are present and actively forming methane within some of these hydrocarbon substrates. In addition to demonstrating that methane formation by these microbes can be stimulated by the introduction of nutrients or suppressed by heat sterilization or the introduction of oxygen, Luca has shown that radio-labeled CO2 (carbon dioxide) introduced to these substrate samples is converted to radio-labeled methane. This demonstrates that the methane formation is the result of a biological process occurring today.

Luca is actively working to characterize Geobioreactors and the microbial consortia that populate them, as well as to understand the metabolic processes by which those consortia generate methane. The company expects to evaluate specific Geobioreactors and their potential for conversion to methane "farms," both through partnerships with active Operators in the oil and gas industry and potentially on its own. If successfully developed, Luca believes this approach has the potential to turn current finite energy resources into even more valuable resources for the long-term production of clean, sustainable energy.

About LUCA Technologies

LUCA Technologies is a privately held company that is developing a novel, long-term biotechnology-driven solution to rising U.S. dependence on foreign energy sources. Addressing the $150 billion domestic natural gas market, the company is leveraging the ability of naturally occurring microorganisms to convert underutilized domestic oil, organic shale and coal resources to clean, sustainable energy.

Contacts:

Christie L. Haas
LUCA Technologies
(303) 534-4344
chaas@lucatechnologies.com

Joan Kureczka or
Jesse Fisher
Kureczka/Martin Associates
(415) 821-2413
Jkureczka@comcast.net

Joan Kureczka | EurekAlert!
Further information:
http://www.lucatechnologies.com

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>