Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Transistor Laser Could Lead To Faster Signal Processing

15.11.2004


Researchers at the University of Illinois at Urbana-Champaign have demonstrated the laser operation of a heterojunction bipolar light-emitting transistor. The scientists describe the fabrication and operation of their transistor laser in the Nov. 15 issue of the journal Applied Physics Letters.

"By incorporating quantum wells into the active region of a light-emitting transistor, we have enhanced the electrical and optical properties, making possible stimulated emission and transistor laser operation," said Nick Holonyak Jr., a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois.

The same principle making possible the transistor - negative and positive charge annihilation in the active region (the source of one of the transistor’s three currents) - has been extended and employed to make a transistor laser, he said. Holonyak invented the first practical light-emitting diode and the first semiconductor laser to operate in the visible spectrum.

Unlike a light-emitting diode, which sends out broadband, incoherent light, the transistor laser emits a narrow, coherent beam. Modulated at transistor speeds, the laser beam could be sent through an optical fiber as a high-speed signal. "This is a true, three-terminal laser, with an electrical input, electrical output and an optical output, not to mention a coherent optical output," said Milton Feng, the Holonyak Professor of Electrical and Computer Engineering at Illinois. "It is a device that operates simultaneously as a laser and as a transistor." Feng is credited with creating the world’s fastest bipolar transistor, a device that operates at a frequency of 509 gigahertz.

At laser threshold - where the light changes from spontaneous emission to stimulated emission - the transistor gain decreases sharply, but still supports three-port operation, Feng said. "The electrical signal goes down, but the optical signal goes up."

Earlier this year, Feng and Holonyak reported their discovery of a three-port, light-emitting transistor. Building upon that work, the researchers fabricated the transistor laser in the university’s Micro and Nanotechnology Laboratory. Unlike traditional transistors, which are built from silicon and germanium, the transistor laser is made from indium gallium phosphide, gallium arsenide and indium gallium arsenide, but can employ other materials in this family (the so-called III-V compounds). "This work is still very much in its infancy," Holonyak said. "There is much more to be learned, including how to separate and optimize the transistor laser output between electrical signals and light signals."

Down the road, ultra-fast transistor lasers could extend the modulation bandwidth of a semiconductor light source from 20 gigahertz to more than 100 gigahertz. Used as optoelectronic interconnects, transistor lasers could facilitate faster signal processing, higher speed devices and large-capacity seamless communications, as well as a new generation of higher performance electrical and optical integrated circuits.

Co-authors of the paper with Feng and Holonyak are postdoctoral research associate Gabriel Walter and graduate research assistant Richard Chan. The Defense Advanced Research Projects Agency funded the work.

James E. Kloeppel | UIUC - News Bureau
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>