Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major grant drives forward cost efficient solar power

14.09.2004


Whether the search for alternative energy sources is driven by our concern about global fossil fuel supplies or over the atmospheric effects of burning of fossil fuels, the government has laid out its aim to cut carbon dioxide emissions by 60% of 1990 levels by 2050, and aims to over- achieve its goal of sourcing 10% of energy from renewables by 2010.



In a significant step to achieve these targets, an enormous £4.5 million award has been made under the UK SuperGen programme to drive the search for cheaper solar power. The grant, made by the Engineering and Physical Sciences Research Council, is the largest awarded under the SuperGen programme, which finances the sustainable power generation and supply initiative.

Renewable sources such as wind wave and solar power are already being used to produce a small percentage of UK energy needs, but if the government’s targets are to be met, the contribution needs to be more significant and the technology more cost-effective.


The technology used to derive electrical energy from the sun, photovoltaics, provides theoretically, the best solution, even in the UK, though current technology means that there are high ‘front-end’ costs to the technology, and consequently take-up has been low.

This new UK research into photovoltaics, or solar cell technology, has brought together 6 university and 7 industrial partners with the aim of finding novel ways for driving down costs and making solar power generation a cost-effective alternative.

“Renewable energy must grow and become more visible in the 21 century. To do this it must become cost effective. The aim of this research is to slash the costs of providing solar energy by half,” said Professor Stuart Irvine, of the University of Wales, Bangor’s School of Chemistry, who is managing the whole project.

“The high cost of solar cells is associated with the semiconductor materials that are needed to convert light into electricity. This project will look at ways of reducing the amount of expensive semiconductor material, such as silicon, while at the same time seeking ways to improve the conversion efficiency of light into electricity. This will have a double benefit where the cost of each solar panel will be reduced but will generate more renewable energy.”

Professor Stuart Irvine | alfa
Further information:
http://www.bangor.ac.uk

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>