Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisting the light away

16.07.2004


Add a deceptively simple twist to a tiny fiber of glass and you get a versatile new class of optical devices to filter light; sense changes in temperature, pressure or other environmental factors; or transmit information via powerful, inexpensive lasers, according to researchers at Chiral Photonics Inc. of Clifton, N.J. Writing in the July 2 issue of Science, the company describes a new class of devices called chiral gratings that were developed with support from the Advanced Technology Program at the National Institute of Standards and Technology (NIST) and from the National Science Foundation.


Tapered chiral optical fiber created by Chiral Photonics. Fiber is less than 100 millionths of a meter in diameter.Credit: Chiral Photonics, Inc.; National Science Foundation



If the finely controlled process for making the glass fibers can be successfully scaled up to production levels, the company hopes to manufacture communications lasers, for example, that are three times more efficient than today’s semiconductor lasers at about a fifth the cost.

Conventional optical fibers have a core of round cross-section, like a strand of spaghetti, but if they are made thin and flat instead, like linguine, they can be twisted into a spiral or double-helix shape. Then something remarkable happens, according to the Chiral Photonics research team. The degree of twist in the fiber acts like a selective filter allowing light pulses with certain wavelengths (colors) or orientations (polarization) to pass through, while scattering everything else.


A gentle twist and polarized light is directed out into the fiber’s cladding, which can be tailored to capture particular wavelengths based on the external environment such as pressure, temperature or other factors. Twist harder, about one rotation per every 10 microns of length, and the fiber becomes a polarizing filter, scattering all the photons except those with a selected polarization. An even tighter twist of one rotation per wavelength and the fiber becomes a highly selective mirror, reflecting back only light of a precise wavelength--an effect that can be used for a small, powerful and inexpensive fiber-optic laser.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov
http://www.chiralphotonics.com
http://www.nsf.gov

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>