Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST Team Reports Method to Characterize New Insulating Materials for Microelectronics


Advance Should Speed Semiconductor Industry Search

Researchers from the Commerce Department’s National Institute of Standards and Technology (NIST) reported today they have developed methods for characterizing key structural features of porous films being eyed as insulators for the ultrathin metal wires that will connect millions of devices on future microprocessors and increase processor speed. The advance, reported today at the American Chemical Society’s national meeting in Boston, will help semiconductor manufacturers and their materials suppliers home in on the most promising "nanoporous film" candidates for shielding miles of interconnecting wire on next-generation microprocessors.

Microprocessors, or central processing units, are both the "brains" and "engines" of computers and other microelectronic devices.

To increase processor speed, semiconductor manufacturers seek to reduce chip sizes. However, size reduction introduces problems with electrical interference between circuit elements ("cross-talk"), motivating development of better insulating materials. Current insulating materials such as silicon dioxide and fluorinated silicate glass (FSG) are approaching their limits as devices are squeezed ever closer on a chip.

To prepare better insulating films, many materials suppliers are developing films interspersed with very small holes that measure about 5 nanometers (billionths of a meter) in diameter or less. Introducing nanometer-sized air bubbles lowers a material’s dielectric constant, or "k" value-a measure of insulating performance. Air, the ideal insulator, has a dielectric constant of 1. Silicon dioxide and FSG, in contrast, have values of about 4.2 and 3.7, respectively.

For several years, the NIST team has been performing a variety of measurements to help the semiconductor industry characterize potential nanoporous insulators. Working with the NIST Center for Neutron Research, materials scientists Ronald Hedden, Barry Bauer, and Hae-Jeong Lee of the NIST Polymers Division developed a neutron scattering technique for surveying minuscule holes in film samples supplied by International SEMATECH, the consortium of chipmakers. Combined with information gathered with other methods, neutron scattering measurements reveal the size and volume fraction of pores, the connectivity among pores and the density of the underlying matrix.

The "Swiss cheese" approach to developing new insulators presents some formidable challenges. To be sure, riddling a material with tiny holes (or bubbles) lowers its "k" value, but changes other important properties as well. Also to be taken into account, for example, are a candidate material’s strength and hardness, how well it adheres to different substrates, and whether it can withstand high temperatures and etch chemicals during processing.

"An ideal replacement for silicon dioxide would provide the desired level of insulation without compromising barrier properties," explains Bauer. "The more fully we can characterize the pore structure and properties of these nanoporous materials, the more straightforward the search becomes."

Bauer, Hedden and Lee led an effort to extend contrast matching-a neutron-based technique for studying bulk materials-to nanoporous thin films. They succeeded by pumping solvent vapor mixtures into a special flow-through chamber containing the films. The vapor condenses into the pores, permitting neutron scattering measurements that probe the film density while yielding valuable information about pore connectivity. The new neutron technique also can detect nanometer-sized inhomogeneities in the composition of the matrix.

Though the results are promising, the contrast-matching procedure is time-consuming, taking three to four days per sample. One goal of the team is to develop a simpler alternative that industry could use to character films faster and more cheaply. Hedden says neutron scattering measurements could be used as a benchmark to evaluate data gathered with other approaches.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards and technology to enhance productivity, facilitate trade and improve the quality of life. For more information on NIST, visit

Mark Bello | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>