Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Team Reports Method to Characterize New Insulating Materials for Microelectronics

27.08.2002


Advance Should Speed Semiconductor Industry Search



Researchers from the Commerce Department’s National Institute of Standards and Technology (NIST) reported today they have developed methods for characterizing key structural features of porous films being eyed as insulators for the ultrathin metal wires that will connect millions of devices on future microprocessors and increase processor speed. The advance, reported today at the American Chemical Society’s national meeting in Boston, will help semiconductor manufacturers and their materials suppliers home in on the most promising "nanoporous film" candidates for shielding miles of interconnecting wire on next-generation microprocessors.

Microprocessors, or central processing units, are both the "brains" and "engines" of computers and other microelectronic devices.


To increase processor speed, semiconductor manufacturers seek to reduce chip sizes. However, size reduction introduces problems with electrical interference between circuit elements ("cross-talk"), motivating development of better insulating materials. Current insulating materials such as silicon dioxide and fluorinated silicate glass (FSG) are approaching their limits as devices are squeezed ever closer on a chip.

To prepare better insulating films, many materials suppliers are developing films interspersed with very small holes that measure about 5 nanometers (billionths of a meter) in diameter or less. Introducing nanometer-sized air bubbles lowers a material’s dielectric constant, or "k" value-a measure of insulating performance. Air, the ideal insulator, has a dielectric constant of 1. Silicon dioxide and FSG, in contrast, have values of about 4.2 and 3.7, respectively.

For several years, the NIST team has been performing a variety of measurements to help the semiconductor industry characterize potential nanoporous insulators. Working with the NIST Center for Neutron Research, materials scientists Ronald Hedden, Barry Bauer, and Hae-Jeong Lee of the NIST Polymers Division developed a neutron scattering technique for surveying minuscule holes in film samples supplied by International SEMATECH, the consortium of chipmakers. Combined with information gathered with other methods, neutron scattering measurements reveal the size and volume fraction of pores, the connectivity among pores and the density of the underlying matrix.

The "Swiss cheese" approach to developing new insulators presents some formidable challenges. To be sure, riddling a material with tiny holes (or bubbles) lowers its "k" value, but changes other important properties as well. Also to be taken into account, for example, are a candidate material’s strength and hardness, how well it adheres to different substrates, and whether it can withstand high temperatures and etch chemicals during processing.

"An ideal replacement for silicon dioxide would provide the desired level of insulation without compromising barrier properties," explains Bauer. "The more fully we can characterize the pore structure and properties of these nanoporous materials, the more straightforward the search becomes."

Bauer, Hedden and Lee led an effort to extend contrast matching-a neutron-based technique for studying bulk materials-to nanoporous thin films. They succeeded by pumping solvent vapor mixtures into a special flow-through chamber containing the films. The vapor condenses into the pores, permitting neutron scattering measurements that probe the film density while yielding valuable information about pore connectivity. The new neutron technique also can detect nanometer-sized inhomogeneities in the composition of the matrix.

Though the results are promising, the contrast-matching procedure is time-consuming, taking three to four days per sample. One goal of the team is to develop a simpler alternative that industry could use to character films faster and more cheaply. Hedden says neutron scattering measurements could be used as a benchmark to evaluate data gathered with other approaches.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards and technology to enhance productivity, facilitate trade and improve the quality of life. For more information on NIST, visit www.nist.gov.

Mark Bello | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>