Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Team Reports Method to Characterize New Insulating Materials for Microelectronics

27.08.2002


Advance Should Speed Semiconductor Industry Search



Researchers from the Commerce Department’s National Institute of Standards and Technology (NIST) reported today they have developed methods for characterizing key structural features of porous films being eyed as insulators for the ultrathin metal wires that will connect millions of devices on future microprocessors and increase processor speed. The advance, reported today at the American Chemical Society’s national meeting in Boston, will help semiconductor manufacturers and their materials suppliers home in on the most promising "nanoporous film" candidates for shielding miles of interconnecting wire on next-generation microprocessors.

Microprocessors, or central processing units, are both the "brains" and "engines" of computers and other microelectronic devices.


To increase processor speed, semiconductor manufacturers seek to reduce chip sizes. However, size reduction introduces problems with electrical interference between circuit elements ("cross-talk"), motivating development of better insulating materials. Current insulating materials such as silicon dioxide and fluorinated silicate glass (FSG) are approaching their limits as devices are squeezed ever closer on a chip.

To prepare better insulating films, many materials suppliers are developing films interspersed with very small holes that measure about 5 nanometers (billionths of a meter) in diameter or less. Introducing nanometer-sized air bubbles lowers a material’s dielectric constant, or "k" value-a measure of insulating performance. Air, the ideal insulator, has a dielectric constant of 1. Silicon dioxide and FSG, in contrast, have values of about 4.2 and 3.7, respectively.

For several years, the NIST team has been performing a variety of measurements to help the semiconductor industry characterize potential nanoporous insulators. Working with the NIST Center for Neutron Research, materials scientists Ronald Hedden, Barry Bauer, and Hae-Jeong Lee of the NIST Polymers Division developed a neutron scattering technique for surveying minuscule holes in film samples supplied by International SEMATECH, the consortium of chipmakers. Combined with information gathered with other methods, neutron scattering measurements reveal the size and volume fraction of pores, the connectivity among pores and the density of the underlying matrix.

The "Swiss cheese" approach to developing new insulators presents some formidable challenges. To be sure, riddling a material with tiny holes (or bubbles) lowers its "k" value, but changes other important properties as well. Also to be taken into account, for example, are a candidate material’s strength and hardness, how well it adheres to different substrates, and whether it can withstand high temperatures and etch chemicals during processing.

"An ideal replacement for silicon dioxide would provide the desired level of insulation without compromising barrier properties," explains Bauer. "The more fully we can characterize the pore structure and properties of these nanoporous materials, the more straightforward the search becomes."

Bauer, Hedden and Lee led an effort to extend contrast matching-a neutron-based technique for studying bulk materials-to nanoporous thin films. They succeeded by pumping solvent vapor mixtures into a special flow-through chamber containing the films. The vapor condenses into the pores, permitting neutron scattering measurements that probe the film density while yielding valuable information about pore connectivity. The new neutron technique also can detect nanometer-sized inhomogeneities in the composition of the matrix.

Though the results are promising, the contrast-matching procedure is time-consuming, taking three to four days per sample. One goal of the team is to develop a simpler alternative that industry could use to character films faster and more cheaply. Hedden says neutron scattering measurements could be used as a benchmark to evaluate data gathered with other approaches.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards and technology to enhance productivity, facilitate trade and improve the quality of life. For more information on NIST, visit www.nist.gov.

Mark Bello | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>