Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system uses mine waste to generate clean power

08.08.2002


New technology for generating power from coal mining waste was launched by the Federal Minister for Industry, Tourism and Resources, the Hon. Ian Macfarlane, at CSIRO in Brisbane today.





The revolutionary technology has the potential to significantly reduce greenhouse gases and bring big savings to mining companies operating coal mines.

The CSIRO-Liquatech hybrid coal and gas turbine system unveiled at the Queensland Centre for Advanced Technologies will generate electricity from waste coal and gas that would otherwise have polluted the atmosphere.


The method harnesses existing technologies in a 1.2 megawatt hybrid coal and gas

turbine system that burns waste coal and methane to generate electricity which can either be used to power the mine’s operations or be returned to the grid for general consumption.

CSIRO and its partners have developed the system over three years as part of a CSIRO research project targeting a 75 per cent reduction in greenhouse gas emissions from coal mines over the next 20 years.

Funded by CSIRO, the Australian Coal Association Research Program (ACARP), the NSW Sustainable Energy Development Authority (SEDA) and the Brisbane-based Liquatech Turbine Company, the turbine-furnace technology will be commercially demonstrated in NSW next year.

CSIRO project leader Patrick Glynn says the technology works by burning methane and coal in a kiln to produce hot air which is then passed through a specially adapted heat exchange unit to drive a gas turbine which generates the electricity.

"Using a kiln coupled with an externally-fired gas turbine allows for a simple but highly efficient system," Mr Glynn says.

"It is significantly cheaper and more efficient than steam-powered systems because it does not require water treatment systems, condensers, cooling towers or high-pressure fluid handling systems."

It is estimated that emissions from underground coal mines contribute around 5.7 per cent of the total 6.7 per cent of Australia’s total annual greenhouse emissions attributed to coal mining operations.

"The scale of the problem can be gauged by the fact that each of Australia’s underground coal mines produces around 800,000 tonnes of waste coal every year," Mr Glynn says.

"As waste coal is a significant cost for coal mines - accounting for up to eight per cent of their budgets - by recycling the waste and returning it to the generating system as power the new technology will potentially save the Australian industry alone millions of dollars annually.

"The new turbine has the potential not only to reduce fugitive emissions from coal mines but also to significantly reduce existing greenhouse effects by displacing hundreds of megawatts of electricity already in the power grid with electricity fuelled by burnt methane which has seven times less greenhouse potential," he says.

More information:

Robert Hoge, Queensland Centre for Advanced Technologies, 0438 120 401
Adrienne Jones, CSIRO Exploration and Mining, 03 9545 8200, 0414 793 450
Keith Bashford, CSIRO Exploration and Mining, 02 6276 6510, 0438 173 654


Rosie Schmedding | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>