Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system uses mine waste to generate clean power

08.08.2002


New technology for generating power from coal mining waste was launched by the Federal Minister for Industry, Tourism and Resources, the Hon. Ian Macfarlane, at CSIRO in Brisbane today.





The revolutionary technology has the potential to significantly reduce greenhouse gases and bring big savings to mining companies operating coal mines.

The CSIRO-Liquatech hybrid coal and gas turbine system unveiled at the Queensland Centre for Advanced Technologies will generate electricity from waste coal and gas that would otherwise have polluted the atmosphere.


The method harnesses existing technologies in a 1.2 megawatt hybrid coal and gas

turbine system that burns waste coal and methane to generate electricity which can either be used to power the mine’s operations or be returned to the grid for general consumption.

CSIRO and its partners have developed the system over three years as part of a CSIRO research project targeting a 75 per cent reduction in greenhouse gas emissions from coal mines over the next 20 years.

Funded by CSIRO, the Australian Coal Association Research Program (ACARP), the NSW Sustainable Energy Development Authority (SEDA) and the Brisbane-based Liquatech Turbine Company, the turbine-furnace technology will be commercially demonstrated in NSW next year.

CSIRO project leader Patrick Glynn says the technology works by burning methane and coal in a kiln to produce hot air which is then passed through a specially adapted heat exchange unit to drive a gas turbine which generates the electricity.

"Using a kiln coupled with an externally-fired gas turbine allows for a simple but highly efficient system," Mr Glynn says.

"It is significantly cheaper and more efficient than steam-powered systems because it does not require water treatment systems, condensers, cooling towers or high-pressure fluid handling systems."

It is estimated that emissions from underground coal mines contribute around 5.7 per cent of the total 6.7 per cent of Australia’s total annual greenhouse emissions attributed to coal mining operations.

"The scale of the problem can be gauged by the fact that each of Australia’s underground coal mines produces around 800,000 tonnes of waste coal every year," Mr Glynn says.

"As waste coal is a significant cost for coal mines - accounting for up to eight per cent of their budgets - by recycling the waste and returning it to the generating system as power the new technology will potentially save the Australian industry alone millions of dollars annually.

"The new turbine has the potential not only to reduce fugitive emissions from coal mines but also to significantly reduce existing greenhouse effects by displacing hundreds of megawatts of electricity already in the power grid with electricity fuelled by burnt methane which has seven times less greenhouse potential," he says.

More information:

Robert Hoge, Queensland Centre for Advanced Technologies, 0438 120 401
Adrienne Jones, CSIRO Exploration and Mining, 03 9545 8200, 0414 793 450
Keith Bashford, CSIRO Exploration and Mining, 02 6276 6510, 0438 173 654


Rosie Schmedding | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>